
 

 

UNIT I 

 Computer Evolution: Von Neumann Architecture. Integer Addition and Subtraction ,Floating 

point representation., Signed numbers, Binary Arithmetic, 1’s and 2’s Complements , Booths 

Algorithm, Hardware Implementation, IEEE Standards, Floating Point Arithmetic , The 

accumulator, Shifts, Carry and Overflow. Instruction Characteristics, CPU with Single BUS, Types 

of Operands, Types of Operations, Addressing Modes, Instruction Formats.  

UNIT II 

 Processor Organization: Parallelism and Computer arithmetic, Computer arithmetic 

associatively. Register Organization, 8086 Registers, Instruction Cycles, Addressing Modes. The 

Instruction cycle, Control of the CPU, Functional Requirements, Single, Two, Three bus structure, 

Execution of a complete instruction, Branching, Sequencing of Control Signals, Hardwired 

Control Unit, Micro-Programmed Control. 

 UNIT III 

 Memory Organization: Characteristics of Memory Systems, Types of Memory, Design of 

memory subsystem using Static, Dynamic Memory Chips, Memory interleaving High Speed 

Memories: Cache Memory, Structure of cache and main memory, Elements of Cache Design, 

Mapping functions, Replacement algorithms, External Memory, Virtual memory 

 UNIT IV  

I/O Organization: Input / Output Module: Need, Techniques, Interrupt Driven I/O, Basic 

concepts of an Interrupt , Response of CPU to an Interrupt, Design Issues, Priorities, Interrupt 

handling, Types of Interrupts. Data Transfer Techniques, Data Memory Access, Buses, Types of 

buses, I/O Interface, Synchronous and Asynchronous Data Transfer, Serial I/O, 

Multiprogramming vs. Multiprocessing  

UNIT V  

Microprogramming: Basic Principles, Features ,Applications and advantages of 

microprogramming, Limitations of microprogramming, Parallel Organization, Instruction Set 

Architecture (ISA), RISC and CISC, Characteristics of CISC, Characteristics of RISC, RISC versus 

CISC, Vector Processing Requirements and Characteristics of vector processing.  

 



 

 

 

UNIT I 

Computer Organization | Von Neumann architecture: 

Historically there have been 2 types of Computers: 

1. Fixed Program Computers – Their function is very specific and they couldn’t be 

programmed, e.g. Calculators. 

2. Stored Program Computers – These can be programmed to carry out many 

different tasks, applications are stored on them, hence the name. 

The modern computers are based on a stored-program concept introduced by John 

Von Neumann. In this stored-program concept, programs and data are stored in a 

separate storage unit called memories and are treated the same. This novel idea 

meant that a computer built with this architecture would be much easier to 

reprogram. 

The basic structure is like, 

 

It is also known as IAS computer and is having three basic units: 



 

The Central Processing Unit (CPU) 

1. The Main Memory Unit 

2. The Input/Output Device 

Let’s consider them in details. 

 Control Unit – 

A control unit (CU) handles all processor control signals. It directs all input and 

output flow, fetches code for instructions and controlling how data moves around 

the system. 

 Arithmetic and Logic Unit (ALU) – 

The arithmetic logic unit is that part of the CPU that handles all the calculations the 

CPU may need, e.g. Addition, Subtraction, Comparisons. It performs Logical 

Operations, Bit Shifting Operations, and Arithmetic Operation. 

 

Figure – Basic CPU structure, illustrating ALU 

 Main Memory Unit (Registers) – 

1. Accumulator: Stores the results of calculations made by ALU. 

2. Program Counter (PC): Keeps track of the memory location of the next instructions 

to be dealt with. The PC then passes this next address to Memory Address Register 

(MAR). 

3. Memory Address Register (MAR): It stores the memory locations of instructions 

that need to be fetched from memory or stored into memory. 

4. Memory Data Register (MDR): It stores instructions fetched from memory or any 

data that is to be transferred to, and stored in, memory. 

5. Current Instruction Register (CIR): It stores the most recently fetched instructions 

while it is waiting to be coded and executed. 



6. Instruction Buffer Register (IBR): The instruction that is not to be executed 

immediately is placed in the instruction buffer register IBR. 

 Input/Output Devices – Program or data is read into main memory from the input 

device or secondary storage under the control of CPU input instruction. Output 

devices are used to output the information from a computer. If some results are 

evaluated by computer and it is stored in the computer, then with the help of output 

devices, we can present it to the user. 

 

 Buses – Data is transmitted from one part of a computer to another, connecting all 

major internal components to the CPU and memory, by the means of Buses. Types: 

1. Data Bus: It carries data among the memory unit, the I/O devices, and the processor. 

2. Address Bus: It carries the address of data (not the actual data) between memory 

and processor. 

3. Control Bus: It carries control commands from the CPU (and status signals from 

other devices) in order to control and coordinate all the activities within the 

computer. 

Von Neuman Architecture : 

Whatever we do to enhance performance, we cannot get away from the fact that instructions can 
only be done one at a time and can only be carried out sequentially. Both of these factors hold back 
the competence of the CPU. This is commonly referred to as the ‘Von Neumann bottleneck’. We can 
provide a Von Neumann processor with more cache, more RAM, or faster components but if original 
gains are to be made in CPU performance then an influential inspection needs to take place of CPU 
configuration. 

This architecture is very important and is used in our PCs and even in Super 

Computers. 

 Integer Addition and Subtraction : 

Negative Number Representation 

 Sign Magnitude 

Sign magnitude is a very simple representation of negative numbers. In sign magnitude the 
first bit is dedicated to represent the sign and hence it is called sign bit. 
Sign bit ‘1’ represents negative sign. 
Sign bit ‘0’ represents positive sign. 
 

In sign magnitude representation of a n – bit number, the first bit will represent sign and 
rest n-1 bits represent magnitude of number. 

 For example, 

 +25 = 011001 

Where 11001 = 25 

And 0 for ‘+’ 
 -25 = 111001 

Where 11001 = 25 

 

+0 = 000000 

– 0 = 100000 



 2’s complement method 

To represent a negative number in this form, first we need to take the 1’s complement of 
the number represented in simple positive binary form and then add 1 to it. 
For example: 
(8)10 = (1000)2 

1’s complement of 1000 = 0111 

Adding 1 to it, 0111 + 1 = 1000 

So, (-8)10 = (1000)2 

Please don’t get confused with (8)10 =1000 and (-8)10=1000 as with 4 bits, we can’t represent 
a positive number more than 7. So, 1000 is representing -8 only. 

 

 

Floating point representation: 

 Binary Arithmetic, 1’s and 2’s complement: 

1’s complement of a binary number is another binary number obtained by toggling 

all bits in it, i.e., transforming the 0 bit to 1 and the 1 bit to 0. 

Examples: 

Let numbers be stored using 4 bits 

 

1's complement of 7 (0111) is 8 (1000) 

1's complement of 12 (1100) is 3 (0011) 

2’s complement of a binary number is 1 added to the 1’s complement of the binary 

number. 

Examples: 

Let numbers be stored using 4 bits 

 

2's complement of 7 (0111) is 9 (1001) 

2's complement of 12 (1100) is 4 (0100) 

  

These representations are used for signed numbers. 

The main difference between 1′ s complement and 2′ s complement is that 1′ s 

complement has two representations of 0 (zero) – 00000000, which is positive zero 

(+0) and 11111111, which is negative zero (-0); whereas in 2′ s complement, there is 

only one representation for zero – 00000000 (+0) because if we add 1 to 11111111 (-

1), we get 00000000 (+0) which is the same as positive zero. This is the reason why 2′ 

s complement is generally used. 



Another difference is that while adding numbers using 1′ s complement, we first do 

binary addition, then add in an end-around carry value. But, 2′ s complement has 

only one value for zero, and doesn’t require carry values. 

  

Booths Algorithm, Hardware Implementation, IEEE Standards,  

Booth algorithm gives a procedure for multiplying binary integers in signed 2’s 

complement representation in efficient way, i.e., less number of 

additions/subtractions required. It operates on the fact that strings of 0’s in the 

multiplier require no addition but just shifting and a string of 1’s in the multiplier 

from bit weight 2^k to weight 2^m can be treated as 2^(k+1 ) to 2^m. 

As in all multiplication schemes, booth algorithm requires examination of the 

multiplier bits and shifting of the partial product. Prior to the shifting, the 

multiplicand may be added to the partial product, subtracted from the partial 

product, or left unchanged according to following rules: 

1. The multiplicand is subtracted from the partial product upon encountering the first 

least significant 1 in a string of 1’s in the multiplier 

2. The multiplier is added to the partial product upon encountering the first 0 (provided 

that there was a previous ‘1’) in a string of 0’s in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the 

previous multiplier bit. 

Hardware Implementation of Booths Algorithm – The hardware implementation 

of the booth algorithm requires the register configuration shown in the figure below. 

Booth’s Algorithm Flowchart –

 
We name the register as A, B and Q, AC, BR and QR respectively. Qn designates the 

least significant bit of multiplier in the register QR. An extra flip-flop Qn+1is 

appended to QR to facilitate a double inspection of the multiplier. Qn+1 is appended 



to QR to facilitate a double inspection of the multiplier. The flowchart for the booth 

algorithm is shown below. 

 

 

 

 

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set 

to a number n equal to the number of bits in the multiplier. The two bits of the 

multiplier in Qn and Qn+1are inspected. If the two bits are equal to 10, it means that 

the first 1 in a string has been encountered. This requires subtraction of the 

multiplicand from the partial product in AC. If the 2 bits are equal to 01, it means that 



the first 0 in a string of 0’s has n = been encountered. This requires the addition of 

the multiplicand to the partial product in AC. 

When the two bits are equal, the partial product does not change. An overflow 

cannot occur because the addition and subtraction of the multiplicand follow each 

other. As a consequence, the 2 numbers that are added always have a opposite signs, 

a condition that excludes an overflow. The next step is to shift right the partial 

product and the multiplier (including Qn+1). This is an arithmetic shift right (ashr) 

operation which AC and QR ti the right and leaves the sign bit in AC unchanged. The 

sequence counter is decremented and the computational loop is repeated n times. 

Example – A numerical example of booth’s algorithm is shown below for n = 4. It 

shows the step by step multiplication of -5 and -7. 

MD = -5 = 1011, MD = 1011, MD'+1 = 0101 

MR = -7 = 1001  

The explanation of first step is as follows: Qn+1                              

AC = 0000, MR = 1001, Qn+1 = 0,  SC = 4    

Qn Qn+1 = 10     

So, we do AC + (MD)'+1, which gives AC = 0101 

On right shifting AC and MR, we get 

AC = 0010, MR = 1100 and Qn+1 = 1  

OPERATION AC MR Qn+1 SC 

 

0000 1001 0 4 

AC + MD’ + 1 0101 1001 0 

 ASHR 0010 1100 1 3 

AC + MR 1101 1100 1 

 ASHR 1110 1110 0 2 

ASHR 1111 0111 0 1 

AC + MD’ + 1 0010 0011 1 0 

Product is calculated as follows: 

Product = AC MR 

Product = 0010 0011 =  35 

 IEEE Standards: 

he IEEE Standard for Floating-Point Arithmetic (IEEE ) is a technical standard for 

floating-point computation which was established in 1985 by the Institute of 

Electrical and Electronics Engineers (IEEE). The standard addressed many problems 

found in the diverse floating point implementations that made them difficult to use 

reliably and reduced their portability. IEEE Standard  floating point is the most 



common representation today for real numbers on computers, including Intel-based 

PC’s, Macs, and most Unix platforms. 

There are several ways to represent floating point number but IEEE 754 is the most 

efficient in most cases. IEEE has 3 basic components: 

1. The Sign of Mantissa – 

This is as simple as the name. 0 represents a positive number while 1 represents a 

negative number. 

2. The Biased exponent – 

The exponent field needs to represent both positive and negative exponents. A bias 

is added to the actual exponent in order to get the stored exponent. 

3. The Normalised Mantisa – 

The mantissa is part of a number in scientific notation or a floating-point number, 

consisting of its significant digits. Here we have only 2 digits, i.e. O and 1. So a 

normalised mantissa is one with only one 1 to the left of the decimal. 

IEEE numbers are divided into two based on the above three components: 

single precision and double precision. 

 

 

 

 

 

Floating point representation of numbers 

 32-bit representation floating point numbers IEEE standard 



 

Normalization 

 Floating point numbers are usually normalized 

 Exponent is adjusted so that leading bit (MSB) of mantissa is 1 

 Since it is always 1 there is no need to store it 
 Scientific notation where numbers are normalized to give a single digit before the decimal 

point like in decimal system e.g. 3.123 x 103 

For example, we represent 3.625 in 32 bit format. 

Changing 3 in binary=11 

Changing .625 in binary 

.625 X 2       1 
 

.25 X 2         0 
 
 
         
           
           
           
         
 
             

.5 X 2           1 
Writing in binary exponent form 

3.625=11.101 X 20 

On normalizing 

11.101 X 20=1.1101 X 21 

On biasing exponent = 127 + 1 = 128 

(128)10=(10000000) 2 

For getting significand 

Digits after decimal = 1101 

Expanding to 23 bit = 11010000000000000000000 

Setting sign bit 
As it is a positive number, sign bit = 0 

Finally we arrange according to representation 

Sign bit      exponent      significand 



 

0            10000000      11010000000000000000000 

  

 64-bit representation floating point numbers IEEE standard 

 

Again we follow the same procedure upto normalization. After that, we add 1023 to bias the 
exponent. 

 

For example, we represent -3.625 in 64 bit format. 
Changing 3 in binary = 11 

Changing .625 in binary 
.625 X 2     1 
 
.25 X 2       0 
 
.5 X 2         1 

  

Writing in binary exponent form 

3.625 = 11.101 X 20 

On normalizing 

11.101 X 20 = 1.1101 X 21 

On biasing exponent 1023 + 1 = 1024 

(1024)10 = (10000000000)2 

So 11 bit exponent = 10000000000 

52 bit significand = 110100000000 …………. making total 52 bits 

Setting sign bit = 1 (number is negative) 
So, final representation 

1 10000000000 110100000000 …………. making total 52 bits by adding further 0’s 

  

Converting floating point into decimal 
Let’s convert a FP number into decimal 
1 01111100 11000000000000000000000 

The decimal value of an IEEE number is given by the formula: 
(1 -2s) * (1 + f) * 2( e – bias ) 

where 

 s, f and e fields are taken as decimal here. 
 (1 -2s) is 1 or -1, depending upon sign bit 0 and 1 

 add an implicit 1 to the significand (fraction field f), as in formula 

Again, the bias is either 127 or 1023, for single or double precision respectively. 

https://tutorialspoint.dev/image/64-bit-representation-floating-point-numbers-IEEE-standard.jpg


  

First convert each individual field to decimal. 
 The sign bit s is 1 

 The e field contains 01111100 = (124)10 

 The mantissa is 0.11000 … = (0.75)10 

Putting these values in formula 

(1 – 2) * (1 + 0.75) * 2124 – 127 = ( – 1.75 * 2-3 ) = – 0.21875 

  

FLOATING POINT (arithmetic ) 

ADDITION AND SUBTRACTION 
 FLOATING POINT ADDITION 

To understand floating point addition, first we see addition of real numbers in decimal as 

same logic is applied in both cases. 

 For example, we have to add 1.1 * 103 and 50. 

We cannot add these numbers directly. First, we need to align the exponent and then, we can 

add significand. 
After aligning exponent, we get 50 = 0.05 * 103 
Now adding significand, 0.05 + 1.1 = 1.15 
So, finally we get (1.1 * 103 + 50) = 1.15 * 103 
Here, notice that we shifted 50 and made it 0.05 to add these numbers. 

  

Now let us take example of floating point number addition 
We follow these steps to add two numbers: 
1. Align the significand 
2. Add the significands 
3. Normalize the result 

 Let the two numbers be 

x = 9.75 

y = 0.5625 

  

Converting them into 32-bit floating point representation, 
9.75’s representation in 32-bit format = 0 10000010 00111000000000000000000 
0.5625’s representation in 32-bit format = 0 01111110 00100000000000000000000 

  

Now we get the difference of exponents to know how much shifting is required. 
(10000010 – 01111110)2 = (4)10 

 Now, we shift the mantissa of lesser number right side by 4 units. 

Mantissa of 0.5625 = 1.00100000000000000000000 
(note that 1 before decimal point is understood in 32-bit representation) 
Shifting right by 4 units, we get 0.00010010000000000000000 
Mantissa of 9.75 = 1. 00111000000000000000000 

  

Adding mantissa of both 

0. 00010010000000000000000 



+ 1. 00111000000000000000000 
————————————————- 

1. 01001010000000000000000 
In final answer, we take exponent of bigger number 
So, final answer consist of : 
Sign bit = 0 
Exponent of bigger number = 10000010 
Mantissa = 01001010000000000000000 
32 bit representation of answer = x + y = 0 10000010 01001010000000000000000 

 

 FLOATING POINT SUBTRACTION 
Subtraction is similar to addition with some differences like we subtract mantissa unlike 

addition and in sign bit we put the sign of greater number. 

 Let the two numbers be 

x = 9.75 

y = – 0.5625 

  

Converting them into 32-bit floating point representation 
9.75’s representation in 32-bit format = 0 10000010 00111000000000000000000 
– 0.5625’s representation in 32-bit format = 1 01111110 00100000000000000000000 

 Now, we find the difference of exponents to know how much shifting is required. 

 

(10000010 –01111110)2 = (4)10 
Now, we shift the mantissa of lesser number right side by 4 units. 
Mantissa of – 0.5625 = 1.00100000000000000000000 
(note that 1 before decimal point is understood in 32-bit representation) 
Shifting right by 4 units, 0.00010010000000000000000 
Mantissa of 9.75= 1. 00111000000000000000000 

  

Subtracting mantissa of both 

0. 00010010000000000000000 
– 1. 00111000000000000000000 

———————————————— 

1. 00100110000000000000000 

  

Sign bit of bigger number = 0 
So, finally the answer = x – y = 0 10000010 00100110000000000000000 



 

The accumulator: 

In the central processing unit, or CPU, of a computer, the accumulator acts as a special 

register that stores values and increments of intermediate arithmetic and logic 

calculations. The accumulator is a temporary memory location that is accessed speedily by 

the CPU. 

The accumulator is the special register of the computer. A register is a special memory 

location that allows very fast access. Here, the accumulator is a temporary memory location 

that stores values of all arithmetic and logical calculations that are being carried out by the 

CPU. The increments of values occur in the accumulator for programming calculations. 

 

The accumulator is the special register of the computer. A register is a special memory 

location that allows very fast access. Here, the accumulator is a temporary memory location 

that stores values of all arithmetic and logical calculations that are being carried out by the 

CPU. The increments of values occur in the accumulator for programming calculations 

Shifts, Carry and Overflow: 

Shift micro-operations are those micro-operations that are used for serial transfer of 

information. These are also used in conjunction with arithmetic micro-operation, logic 

micro-operation, and other data-processing operations. 

There are three types of shifts micro-operations: 



1. Logical : 
It transfers the 0 zero through the serial input. We use the symbols shl for logical 

shift-left and shr for shift-right. 

1. Logical Shift Left – 
In this shift one position moves each bit to the left one by one. The Empty least 

significant bit (LSB) is filled with zero (i.e, the serial input), and the most 

significant bit (MSB) is rejected. 

 

Right Logical Shift – 

In this one position moves each bit to the right one by one and the least 

significant bit(LSB) is rejected and the empty MSB is filled with zero. 

 

 Binary Number System | Overflow in Arithmetic Addition 



In computer Architecture 2’s Compliment Number System is widely used. The discussion of overflow 

here mainly will we with respect to 2’s Complimentary System. 

N-bit 2’s Compliment number System can represent Number from  to  

4 Bit can represent numbers from ( -8 to 7 ) 

5 Bit can represent numbers from ( -16 to 15 ) in 2’s Complimentary System. 

Overflow Occurs with respect to addition when 2 N-bit 2’s Compliment Numbers are added and the 

answer is too large to fit into that N-bit Group. 

A computer has N-Bit Fixed registers. Addition of two N-Bit Number will result in max N+1 Bit 

number. That Extra Bit is stored in carry Flag. But Carry does not always indicate overflow. 

 

 

 

 

Adding 7 + 1 in 4-Bit must be equal to 8. But 8 cannot be represented with 4 bit 2’s complement 

number as it is out of range. Two Positive numbers were added and the answer we got is negative (-

8). Here Carry is also 0. It is normally left to the programmer to detect overflow and deal with this 

situation. 

Overflow Detection – 

Overflow occurs when: 

1. Two negative numbers are added and an answer comes positive or 

2. Two positive numbers are added and an answer comes as negative. 

So overflow can be detected by checking Most Significant Bit(MSB) of two operands and answer. But 

Instead of using 3-bit Comparator Overflow can also be detected using 2 Bit Comparator just by 

checking Carry-in(C-in) and Carry-Out(C-out) from MSB’s. Consider N-Bit Addition of 2’s Compliment 

number. 

 

 

 



 

Overflow Occurs when C-in  C-out. Above expression for overflow can be explained from below 

Analysis. 

 

In first Figure the MSB of two numbers are 0 which means they are positive. Here if C-in is 1 we get 

answer’s MSB as 1 means answer is negative (Overflow) and C-out as 0. C-in  C-out hence 

overflow. 

In second Figure the MSB of two numbers are 1 which means they are negative. Here if C-in is 0 we 

get answer MSB as 0 means answer is positive(Overflow) and C-out as 1. C-in  C-out hence 

overflow. 

Readers can also try out other combination of c-in c-out and MSB’s to check overflow. 

So Carry-in and Carry-out at MSB’s are enough to detect Overflow. 

 

Above XOR Gate can be used to detect overflow. 

 

 CPU with Single BUS: 



1. Single Bus Structure : 

In single bus structure, one common bus used to communicate 

between peripherals and microprocessor. It has disadvantages due to 

use of one common bus. 

 

2. Double Bus Structure : 
In double bus structure, one bus is used to fetch instruction while other 
is used to fetch data, required for execution. It is to overcome the 
bottleneck of single bus structure. 

 
 Types of Operands, Types of Operations 

Instruction Formats (Zero, One, Two and Three Address Instruction) 

Computer perform task on the basis of instruction provided. A instruction in computer comprises of 

groups called fields. These field contains different information as for computers every thing is in 0 and 

1 so each field has different significance on the basis of which a CPU decide what so perform. The 

most common fields are: 



 Operation field which specifies the operation to be performed like addition. 

 Address field which contain the location of operand, i.e., register or memory location. 

 Mode field which specifies how operand is to be founded. 

A instruction is of various length depending upon the number of addresses it contain. Generally CPU 

organization are of three types on the basis of number of address fields: 

1. Single Accumulator organization 

2. General register organization 

3. Stack organization 

In first organization operation is done involving a special register called accumulator. In second on 

multiple registers are used for the computation purpose. In third organization the work on stack basis 

operation due to which it does not contain any address field. It is not necessary that only a single 

organization is is applied a blend of various organization is mostly what we see generally. 

On the basis of number of address instruction are classified as: 

Note that we will use X = (A+B)*(C+D) expression to showcase the procedure. 

 

 

 

1. Zero Address Instructions – 

 

A stack based computer do not use address field in instruction.To evaluate a expression first it is 

converted to revere Polish Notation i.e. Post fix Notation. 

Expression: X = (A+B)*(C+D) 

Postfixed : X = AB+CD+* 

TOP means top of stack 

M[X] is any memory location 

PUSH A TOP = A 

PUSH B TOP = B 

ADD 

 

TOP = A+B 



PUSH C TOP = C 

PUSH D TOP = D 

ADD 

 

TOP = C+D 

MUL 

 

TOP = (C+D)*(A+B) 

POP X M[X] = TOP 

2. One Address Instructions – 

This use a implied ACCUMULATOR register for data manipulation.One operand is in accumulator and 

other is in register or memory location.Implied means that the CPU already know that one operand is 

in accumulator so there is no need to specify it. 

 

Expression: X = (A+B)*(C+D) 

AC is accumulator 

M[] is any memory location 

M[T] is temporary location 

LOAD A AC = M[A] 

ADD B AC = AC + M[B] 

STORE T M[T] = AC 

LOAD C AC = M[C] 

ADD D AC = AC + M[D] 

MUL T AC = AC * M[T] 

STORE X M[X] = AC 

3. Two Address Instructions – 

This is common in commercial computers.Here two address can be specified in the instruction.Unlike 

earlier in one address instruction the result was stored in accumulator here result cab be stored at 

different location rather than just accumulator, but require more number of bit to represent address. 

 
Here destination address can also contain operand. 

Expression: X = (A+B)*(C+D) 

R1, R2 are registers 



M[] is any memory location 

MOV R1, A R1 = M[A] 

ADD R1, B R1 = R1 + M[B] 

MOV R2, C R2 = C 

ADD R2, D R2 = R2 + D 

MUL R1, R2 R1 = R1 * R2 

MOV X, R1 M[X] = R1 

4. Three Address Instructions – 

This has three address field to specify a register or a memory location. Program created are much 

short in size but number of bits per instruction increase. These instructions make creation of program 

much easier but it does not mean that program will run much faster because now instruction only 

contain more information but each micro operation (changing content of register, loading address in 

address bus etc.) will be performed in one cycle only. 

 

Expression: X = (A+B)*(C+D) 

R1, R2 are registers 

M[] is any memory location 

ADD R1, A, B R1 = M[A] + M[B] 

ADD R2, C, D R2 = M[C] + M[D] 

MUL X, R1, R2 M[X] = R1 * R2 

Addressing Modes: 

Addressing modes specifies the way, the effective address of an operand 

is represented in the instruction. Some addressing mode efficiently allows 

referring to a large range of area like a linear array of addresses and list of 

addresses. Addressing mode describes a flexible and efficient way to 

define complex effective address. 

Generally, the programs are written in a high-level language, as it is a 
convenient way to define the variables and operations that the programmer 
needs to perform on the variables. Later, this program is compiled to 
generate the machine code. The machine code has low-level instructions. 



The low-level instruction has opcode and operands. Addressing mode has 
nothing to do with the opcode part. It focuses on presenting the operand’s 
address in the instructions. 

We have the list below showing the various kind of addressing modes: 

Types of Addressing Modes 

1. Register Addressing Mode 

2. Direct Addressing Mode 

3. Immediate Addressing Mode 

4. Register Indirect Addressing Mode 

5. Index Addressing Mode 

6. Auto Increment /Decrement Mode 

7. Relative Addressing Mode 

 

 

 Instruction Formats: 

Instruction format 

1. Instruction format describes the internal structures (layout design) of the bits of an instruction, in 

terms of its constituent parts. 

2. An Instruction format must include an opcode, and address is dependent on an availability of 

particular operands. 

3. The format can be implicit or explicit which will indicate the addressing mode for each operand. 

4. Designing of an Instruction format is very complex. As we know a computer uses a variety of 

instructional. There are many designing issues which affect the instructional design, some of them 

are given are below: 

o Instruction length: It is a most basic issue of the format design. A longer will be the 

instruction it means more time is needed to fetch the instruction. 

o Memory size: If larger memory range is to be addressed then more bits will be required in 

the address field. 

o Memory organization: If the system supports the virtual memory then memory range 

which needs to be addressed by the instruction, is larger than the physical memory. 

o Memory transfer length: Instruction length should be equal to the data bus length or it 

should be multiple of it. 

5. Instruction formats are classified into 5 types based on the type of the CPU organization. CPU 

organization is divided into three types based on the availability of the ALU operands, which are as 

follows here: 

 

 

https://binaryterms.com/addressing-modes-and-its-types.html#RegisterAddressingMode
https://binaryterms.com/addressing-modes-and-its-types.html#DirectAddressingMode
https://binaryterms.com/addressing-modes-and-its-types.html#ImmediateAddressingMode
https://binaryterms.com/addressing-modes-and-its-types.html#RegisterIndirectAddressingMode
https://binaryterms.com/addressing-modes-and-its-types.html#IndexAddressingMode
https://binaryterms.com/addressing-modes-and-its-types.html#AutoIncrementMode
https://binaryterms.com/addressing-modes-and-its-types.html#AutoDecrementMode
https://binaryterms.com/addressing-modes-and-its-types.html#RelativeAddressingMode


 

UNIT II 

 Processor Organization:  

Parallelism and Computer arithmetic: 

Parallelism in Computer Arithmetic: A Historical Perspective Many early parallel processing 

breakthroughs emerged from the quest for faster and higher-throughput arithmetic operations. 

Additionally, the influence of arithmetic techniques on parallel computer performance can be seen 

in diverse areas such the bit-serial arithmetic units of early massively parallel SIMD computers, 

pipelining and pipeline chaining in vector machines, design of floating-point standards to ensure the 

accuracy and portability of numerically-intensive programs, and prominence of GPUs in today’s top-

of-the-line supercomputers.  

Computer arithmetic associatively: 

Computers Operations on integers 

 Addition and subtraction 

 Multiplication and division 

 Dealing with overflow  

Floating-point real numbers  

Floating point in 8086 

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point 

computation which was established in 1985 by the Institute of Electrical and Electronics Engineers 

(IEEE). The standard addressed many problems found in the diverse floating point implementations that 

made them difficult to use reliably and reduced their portability. IEEE Standard 754 floating point is the 

most common representation today for real numbers on computers, including Intel-based PC’s, Macs, and 

most Unix platforms. 

There are several ways to represent floating point number but IEEE 754 is the most efficient in most cases. 

IEEE 754 has 3 basic components: 

1. The Sign of Mantissa – 
This is as simple as the name. 0 represents a positive number while 1 represents a negative number. 

2. The Biased exponent – 

The exponent field needs to represent both positive and negative exponents. A bias is added to the 

actual exponent in order to get the stored exponent. 

3. The Normalised Mantissa – 

The mantissa is part of a number in scientific notation or a floating-point number, consisting of its 

significant digits. Here we have only 2 digits, i.e. O and 1. So a normalised mantissa is one with only 

one 1 to the left of the decimal. 

IEEE 754 numbers are divided into two based on the above three components: single precision and 

double precision. 



 

 

Programmer Model of  8086 : 
 

Pin diagram of 8086 microprocessor is as given below: 

 

Intel 8086 is a 16-bit HMOS microprocessor. It is available in 40 pin DIP chip. It uses a 5V DC supply 

for its operation. The 8086 uses 20-line address bus. It has a 16-line data bus. The 20 lines of the 

address bus operate in multiplexed mode. The 16-low order address bus lines have been multiplexed 

with data and 4 high-order address bus lines have been multiplexed with status signals. 



 

 

 

AD0-AD15 : Address/Data bus. These are low order address bus. They are multiplexed with data. 

When AD lines are used to transmit memory address the symbol A is used instead of AD, for example 

A0-A15. When data are transmitted over AD lines the symbol D is used in place of AD, for example 

D0-D7, D8-D15 or D0-D15. 

A16-A19 : High order address bus. These are multiplexed with status signals. 

S2, S1, S0 : Status pins. These pins are active during T4, T1 and T2 states and is returned to passive 

state (1,1,1 during T3 or Tw (when ready is inactive). These are used by the 8288 bus controller for 

generating all the memory and I/O operation) access control signals. Any change in S2, S1, S0 during 

T4 indicates the beginning of a bus cycle. 

 

 

S2 S1 S0 Characteristics 

0 0 0 Interrupt acknowledge 

0 0 1 Read I/O port 

0 1 0 Write I/O port 

0 1 1 Halt 

1 0 0 Code access 

1 0 1 Read memory 

1 1 0 Write memory 

1 1 1 Passive state 

A16/S3, A17/S4, A18/S5, A19/S6 : The specified address lines are multiplexed with corresponding 

status signals. 

A17/S4 A16/S3 Function 

0 0 Extra segment access 

0 1 Stack segment access 

1 0 Code segment access 

1 1 Data segment access 

BHE’/S7 : Bus High Enable/Status. During T1 it is low. It is used to enable data onto the most 

significant half of data bus, D8-D15. 8-bit device connected to upper half of the data bus use BHE 

(Active Low) signal. It is multiplexed with status signal S7. S7 signal is available during T2, T3 and T4. 

RD’: This is used for read operation. It is an output signal. It is active when low. 

READY : This is the acknowledgement from the memory or slow device that they have completed the 

data transfer. The signal made available by the devices is synchronized by the 8284A clock generator 

to provide ready input to the microprocessor. The signal is active high(1). 

INTR : Interrupt Request. This is triggered input. This is sampled during the last clock cycles of each 

instruction for determining the availability of the request. If any interrupt request is found pending, 

the processor enters the interrupt acknowledge cycle. This can be internally masked after resulting the 

interrupt enable flag. This signal is active high(1) and has been synchronized internally. 



 

 

 

NMI : Non maskable interrupt. This is an edge triggered input which results in a type II interrupt. A 

subroutine is then vectored through an interrupt vector lookup table which is located in the system 

memory. NMI is non-maskable internally by software. A transition made from low(0) to high(1) 

initiates the interrupt at the end of the current instruction. This input has been synchronized internally. 

INTA : Interrupt acknowledge. It is active low(0) during T2, T3 and Tw of each interrupt acknowledge 

cycle. 

MN/MX’ : Minimum/Maximum. This pin signal indicates what mode the processor will operate in. 

RQ’/GT1′, RQ’/GT0′ : Request/Grant. These pins are used by local bus masters used to forc the 

microprocessor to release the local bus at the end of the microprocessor’s current bus cycle. Each of 

the pin is bi-directional. RQ’/GT0′ have higher priority than RQ’/GT1′. 

LOCK’ : Its an active low pin. It indicates that other system bus masters have not been allowed to gain 

control of the system bus while LOCK’ is active low(0). The LOCK signal will be active until the 

completion of the next instruction. 

TEST’ : This examined by a ‘WAIT’ instruction. If the TEST pin goes low(0), execution will continue, else 

the processor remains in an idle state. The input is internally synchronized during each of the clock 

cycle on leading edge of the clock. 

CLK : Clock Input. The clock input provides the basic timing for processing operation and bus control 

activity. Its an asymmetric square wave with a 33% duty cycle. 

RESET : This pin requires the microprocessor to terminate its present activity immediately. The signal 

must be active high(1) for at least four clock cycles. 

Vcc : Power Supply( +5V D.C.) 

GND : Ground 

QS1,QS0 : Queue Status. These signals indicate the status of the internal 8086 instruction queue 

according to the table shown below 

QS1 QS0 Status 

0 0 No operation 

0 1 First byte of op code from queue 

1 0 Empty the queue 

1 1 Subsequent byte from queue 

DT/R : Data Transmit/Receive. This pin is required in minimum systems, that want to use an 8286 or 

8287 data bus transceiver. The direction of data flow is controlled through the transceiver. 

DEN : Data enable. This pin is provided as an output enable for the 8286/8287 in a minimum system 

which uses transceiver. DEN is active low(0) during each memory and input-output access and for 

INTA cycles. 

HOLD/HOLDA : HOLD indicates that another master has been requesting a local bus .This is an active 

high(1). The microprocessor receiving the HOLD request will issue HLDA (high) as an 

acknowledgement in the middle of a T4 or T1 clock cycle. 

ALE : Address Latch Enable. ALE is provided by the microprocessor to latch the address into the 8282 

or 8283 address latch. It is an active high(1) pulse during T1 of any bus cycle. ALE signal is never 

floated, is always integer. 

 

Register organisation 8086 registers : 

General purpose registers are used to store temporary data within the microprocessor. There are 8 

general purpose registers in 8086 microprocessor. 



 

Figure – General purpose registers 

1. AX – This is the accumulator. It is of 16 bits and is divided into two 8-bit registers AH and AL to also 

perform 8-bit instructions. 

It is generally used for arithmetical and logical instructions but in 8086 microprocessor it is not 

mandatory to have accumulator as the destination operand. 

 

 

 

Example: 

ADD AX, AX (AX = AX + AX) 

2. BX – This is the base register. It is of 16 bits and is divided into two 8-bit registers BH and BL to also 

perform 8-bit instructions. 

It is used to store the value of the offset. 

Example: 

MOV BL, [500] (BL = 500H) 

3. CX – This is the counter register. It is of 16 bits and is divided into two 8-bit registers CH and CL to 

also perform 8-bit instructions. 

It is used in looping and rotation. 

 

 

 

Example: 

MOV CX, 0005 

LOOP 

4. DX – This is the data register. It is of 16 bits and is divided into two 8-bit registers DH and DL to also 

perform 8-bit instructions. 

It is used in multiplication an input/output port addressing. 

Example: 

MUL BX (DX, AX = AX * BX) 

5. SP – This is the stack pointer. It is of 16 bits. 

It points to the topmost item of the stack. If the stack is empty the stack pointer will be (FFFE)H. It’s 

offset address relative to stack segment. 

6. BP – This is the base pointer. It is of 16 bits. 

It is primary used in accessing parameters passed by the stack. It’s offset address relative to stack 

segment. 



7. SI – This is the source index register. It is of 16 bits. 

It is used in the pointer addressing of data and as a source in some string related operations. It’s 

offset is relative to data segment. 

8. DI – This is the destination index register. It is of 16 bits. 

It is used in the pointer addressing of data and as a destination in some string related operations.It’s 

offset is relative to extra segment. 

 

 

Micro instruction: 

Logical instructions  

Logical instructions are the instructions which perform basic logical operations such as AND, OR, etc. 

In 8086 microprocessor, the destination operand need not be the accumulator. 

Following is the table showing the list of logical instructions: 

OPCODE OPERAND DESTINATION EXAMPLE 

AND D, S D = D AND S AND AX, 0010 

OR D, S D = D OR S OR AX, BX 

NOT D D = NOT of D NOT AL 

XOR D, S D = D XOR S XOR AL, BL 

TEST D, S performs bit-wise AND operation and affects the flag registor TEST [0250], 06 

SHR D, C shifts each bit in D to the right C times and 0 is stored at MSB position SHR AL, 04 

SHL D, C shifts each bit in D to the left C times and 0 is stored at LSB position SHL AX, BL 

ROR D, C rotates all bits in D to the right C times ROR BL, CL 

ROL R, C rotates all bits in D to the left C times ROL BX, 06 

RCR D, C rotates all bits in D to the right along with carry flag C times RCR BL, CL 

RCL R, C rotates all bits in D to the left along with carry flag C times RCL BX, 06 

Here D stands for destination, S stands for source and C stands for count. 

They can either be register, data or memory address. 

 

Process control instructions  

Process control instructions are the instructions which control the processor’s action by setting(1) or 

resetting(0) the values of flag registers. 

Following is the table showing the list of process control instructions: 

OPCODE OPERAND EXPLPANATION EXAMPLE 

STC none sets carry flag to 1 STC 

CLC none resets carry flag to 0 CLC 

CMC none compliments the carry flag CMC 



OPCODE OPERAND EXPLPANATION EXAMPLE 

STD none sets directional flag to 1 STD 

CLD none resets directional flag to 0 CLD 

STI none sets the interrupt flag to 1 STI 

CLI none resets the interrupt flag to 0 CLI 

Arithmetic instructions  

Arithmetic Instructions are the instructions which perform basic arithmetic operations such as 

addition, subtraction and a few more. Unlike in 8085 microprocessor, in 8086 microprocessor the 

destination operand need not be the accumulator. 

Following is the table showing the list of arithmetic instructions: 

OPCODE OPERAND EXPLANATION EXAMPLE 

ADD D, S D = D + S ADD AX, [2050] 

ADC D, S D = D + S + prev. carry ADC AX, BX 

SUB D, S D = D – S SUB AX, [SI] 

SBB D, S D = D – S – prev. carry SBB [2050], 0050 

MUL 8-bit register AX = AL * 8-bit reg. MUL BH 

MUL 16-bit register DX AX = AX * 16-bit reg. MUL CX 

IMUL 8 or 16 bit register performs signed multiplication IMUL CX 

DIV 8-bit register AX = AX / 8-bit reg. ; AL = quotient ; AH = remainder DIV BL 

DIV 16-bit register DX AX / 16-bit reg. ; AX = quotient ; DX = remainder DIV CX 

IDIV 8 or 16 bit register performs signed division IDIV BL 

INC D D = D + 1 INC AX 

DEC D D = D – 1 DEC [2050] 

CBW none converts signed byte to word CBW 

CWD none converts signed byte to double word CWD 

NEG D D = 2’s compliment of D NEG AL 

DAA none decimal adjust accumulator DAA 

DAS none decimal adjust accumulator after subtraction DAS 

AAA none ASCII adjust accumulator after addition AAA 

AAS none ASCII adjust accumulator after subtraction AAS 

AAM none ASCII adjust accumulator after multiplication AAM 



OPCODE OPERAND EXPLANATION EXAMPLE 

AAD none ASCII adjust accumulator after division AAD 

Here D stands for destination and S stands for source. 

D and S can either be register, data or memory address. 

The Instruction cycle : 
An instruction cycle, also known as fetch-decode-execute cycle is the basic operational 

process of a computer. This process is repeated continuously by CPU from boot up to shut 

down of computer. 

Following are the steps that occur during an instruction cycle: 

1. Fetch the Instruction 

The instruction is fetched from memory address that is stored in PC(Program Counter) and 

stored in the instruction register IR. At the end of the fetch operation, PC is incremented by 1 

and it then points to the next instruction to be executed. 

2. Decode the Instruction 

The instruction in the IR is executed by the decoder. 

3. Read the Effective Address 

If the instruction has an indirect address, the effective address is read from the memory. 

Otherwise operands are directly read in case of immediate operand instruction. 

4. Execute the Instruction 

The Control Unit passes the information in the form of control signals to the functional unit 

of CPU. The result generated is stored in main memory or sent to an output device. 

 
The cycle is then repeated by fetching the next instruction. Thus in this way the instruction 

cycle is repeated continuously. 

 
 

Addressing modes : 

Prerequisite – Addressing modes, Addressing modes in 8085 microprocessor 

The way of specifying data to be operated by an instruction is known as addressing modes. This 

specifies that the given data is an immediate data or an address. It also specifies whether the given 

operand is register or register pair. 

Types of addressing modes: 

1. Register mode – In this type of addressing mode both the operands are registers. 

Example: 

2. MOV AX, BX 

3. XOR AX, DX 

ADD AL, BL 

4. Immediate mode – In this type of addressing mode the source operand is a 8 bit or 16 bit data. 

Destination operand can never be immediate data. 

Example: 

5. MOV AX, 2000 

6. MOV CL, 0A 

7. ADD AL, 45 

AND AX, 0000 

Note that to initialize the value of segment register an register is required. 

 

 

 

https://tutorialspoint.dev/slugresolver/addressing-modes/
https://tutorialspoint.dev/slugresolver/addressing-modes-8085-microprocessor/


MOV AX, 2000 

MOV CS, AX  

8. Displacement or direct mode – In this type of addressing mode the effective address is directly given 

in the instruction as displacement. 

Example: 

9. MOV AX, [DISP] 

MOV AX, [0500] 

10. Register indirect mode – In this addressing mode the effective address is in SI, DI or BX. 

Example: 

11. MOV AX, [DI] 

12. ADD AL, [BX] 

MOV AX, [SI]  

13. Based indexed mode – In this the effective address is sum of base register and index register. 

14. Base register: BX, BP 

Index register: SI, DI  

The physical memory address is calculated according to the base register. 

Example: 

MOV AL, [BP+SI] 

MOV AX, [BX+DI] 

15. Indexed mode – In this type of addressing mode the effective address is sum of index register and 

displacement. 

Example: 

16. MOV AX, [SI+2000] 

MOV AL, [DI+3000] 

17. Based mode – In this the effective address is the sum of base register and displacement. 

Example: 

MOV AL, [BP+ 0100] 

18. Based indexed displacement mode – In this type of addressing mode the effective address is the 

sum of index register, base register and displacement. 

Example: 

MOV AL, [SI+BP+2000]  

19. String mode – This addressing mode is related to string instructions. In this the value of SI and DI are 

auto incremented and decremented depending upon the value of directional flag. 

Example: 

20. MOVS B 

MOVS W  

21. Input/Output mode – This addressing mode is related with input output operations. 

Example: 

22. IN A, 45 

OUT A, 50  

23. Relative mode – 

In this the effective address is calculated with reference to instruction pointer. 

Example: 

24. JNZ 8 bit address 

IP=IP+8 bit address  

Functional Requirements Control of the CPU: 



 

 

Execution of a complete instruction: 

Execution of a Complete Instructions: 

1. Fetch information from memory to CPU. 

2. Store information to CPU register to memory. 

3. Transfer of data between CPU registers. 

4. Perform arithmetic or logic operation and store the result in CPU registers. 

Difference between Single Bus Structure and 
Double Bus Structure 
1. Single Bus Structure : 
In single bus structure, one common bus used to communicate between peripherals and microprocessor. It 

has disadvantages due to use of one common bus. 

 

2. Double Bus Structure : 
In double bus structure, one bus is used to fetch instruction while other is used to fetch data, 
required for execution. It is to overcome the bottleneck of single bus structure. 



 

Multiple Bus organization  

Bus is a group of conducting wires which carries information, all the peripherals are connected to 

microprocessor through Bus. 

Diagram to represent bus organization system of 8085 Microprocessor. 

 

 

There are three types of buses. 

1. Address bus – 

It is a group of conducting wires which carries address only.Address bus is unidirectional because data 

flow in one direction, from microprocessor to memory or from microprocessor to Input/output 

devices (That is, Out of Microprocessor). 



 

Length of Address Bus of 8085 microprocessor is 16 Bit (That is, Four Hexadecimal Digits), ranging 

from 0000 H to FFFF H, (H denotes Hexadecimal). The microprocessor 8085 can transfer maximum 16 

bit address which means it can address 65, 536 different memory location. 

The Length of the address bus determines the amount of memory a system can address.Such as a 

system with a 32-bit address bus can address 2^32 memory locations.If each memory location holds 

one byte, the addressable memory space is 4 GB.However, the actual amount of memory that can be 

accessed is usually much less than this theoretical limit due to chipset and motherboard limitations. 

2. Data bus – 

It is a group of conducting wires which carries Data only.Data bus is bidirectional because data flow in 

both directions, from microprocessor to memory or Input/Output devices and from memory or 

Input/Output devices to microprocessor. 

Length of Data Bus of 8085 microprocessor is 8 Bit (That is, two Hexadecimal Digits), ranging from 00 

H to FF H. (H denotes Hexadecimal). 

When it is write operation, the processor will put the data (to be written) on the data bus, when it is 

read operation, the memory controller will get the data from specific memory block and put it into the 

data bus. 

The width of the data bus is directly related to the largest number that the bus can carry, such as an 8 

bit bus can represent 2 to the power of 8 unique values, this equates to the number 0 to 255.A 16 bit 

bus can carry 0 to 65535. 

3. Control bus – 

It is a group of conducting wires, which is used to generate timing and control signals to control all 

the associated peripherals, microprocessor uses control bus to process data, that is what to do with 

selected memory location. Some control signals are: 

o Memory read 

o Memory write 

o I/O read 

o I/O Write 

o Opcode fetch 

If one line of control bus may be the read/write line.If the wire is low (no electricity flowing) then the 

memory is read, if the wire is high (electricity is flowing) then the memory is written. 

 

 

Branching: 

Branching instructions in 8085 microprocessor 

Branching instructions refer to the act of switching execution to a different instruction sequence as a 

result of executing a branch instruction. 

The three types of branching instructions are: 

1. Jump (unconditional and conditional) 

2. Call (unconditional and conditional) 

3. Return (unconditional and conditional) 

1. Jump Instructions – The jump instruction transfers the program sequence to the memory address 

given in the operand based on the specified flag. Jump instructions are 2 types: Unconditional Jump 

Instructions and Conditional Jump Instructions. 

(a) Unconditional Jump Instructions: Transfers the program sequence to the described memory 

address. 

OPCODE OPERAND EXPLANATION EXAMPLE 

JMP address Jumps to the address JMP 2050 



(b) Conditional Jump Instructions: Transfers the program sequence to the described memory 

address only if the condition in satisfied. 

 

 

OPCODE OPERAND EXPLANATION EXAMPLE 

JC address Jumps to the address if carry flag is 1 JC 2050 

JNC address Jumps to the address if carry flag is 0 JNC 2050 

JZ address Jumps to the address if zero flag is 1 JZ 2050 

JNZ address Jumps to the address if zero flag is 0 JNZ 2050 

JPE address Jumps to the address if parity flag is 1 JPE 2050 

JPO address Jumps to the address if parity flag is 0 JPO 2050 

JM address Jumps to the address if sign flag is 1 JM 2050 

JP address Jumps to the address if sign flag 0 JP 2050 

2. Call Instructions – The call instruction transfers the program sequence to the memory address 

given in the operand. Before transferring, the address of the next instruction after CALL is pushed onto 

the stack. Call instructions are 2 types: Unconditional Call Instructions and Conditional Call 

Instructions. 

(a) Unconditional Call Instructions: It transfers the program sequence to the memory address given 

in the operand. 

OPCODE OPERAND EXPLANATION EXAMPLE 

CALL address Unconditionally calls CALL 2050 

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions executes. 

OPCODE OPERAND EXPLANATION EXAMPLE 

CC address Call if carry flag is 1 CC 2050 

CNC address Call if carry flag is 0 CNC 2050 

CZ address Calls if zero flag is 1 CZ 2050 

CNZ address Calls if zero flag is 0 CNZ 2050 

CPE address Calls if carry flag is 1 CPE 2050 

CPO address Calls if carry flag is 0 CPO 2050 

CM address Calls if sign flag is 1 CM 2050 

CP address Calls if sign flag is 0 CP 2050 

3. Return Instructions – The return instruction transfers the program sequence from the subroutine 

to the calling program. Jump instructions are 2 types: Unconditional Jump Instructions and 

Conditional Jump Instructions. 

(a) Unconditional Return Instruction: The program sequence is transferred unconditionally from the 

subroutine to the calling program. 



OPCODE OPERAND EXPLANATION EXAMPLE 

RET none Return from the subroutine unconditionally RET 

(b) Conditional Return Instruction: The program sequence is transferred unconditionally from the 

subroutine to the calling program only is the condition is satisfied. 

OPCODE OPERAND EXPLANATION EXAMPLE 

RC none Return from the subroutine if carry flag is 1 RC 

RNC none Return from the subroutine if carry flag is 0 RNC 

RZ none Return from the subroutine if zero flag is 1 RZ 

RNZ none Return from the subroutine if zero flag is 0 RNZ 

RPE none Return from the subroutine if parity flag is 1 RPE 

RPO none Return from the subroutine if parity flag is 0 RPO 

RM none Returns from the subroutine if sign flag is 1 RM 

RP none Returns from the subroutine if sign flag is 0 RP 

 

 Hardwired Control Unit, Micro-Programmed Control. 

To execute an instruction, the control unit of the CPU must generate the required 
control signal in the proper sequence. There are two approaches used for generating 
the control signals in proper sequence as Hardwired Control unit and Micro-
programmed control unit. 

Hardwired Control Unit – 
The control hardware can be viewed as a state machine that changes from one state 
to another in every clock cycle, depending on the contents of the instruction register, 
the condition codes and the external inputs. The outputs of the state machine are the 
control signals. The sequence of the operation carried out by this machine is 
determined by the wiring of the logic elements and hence named as “hardwired”. 
 Fixed logic circuits that correspond directly to the Boolean expressions are used to 

generate the control signals. 
 Hardwired control is faster than micro-programmed control. 
 A controller that uses this approach can operate at high speed. 
 RISC architecture is based on hardwired control unit 



 

Micro-programmed Control Unit – 
 The control signals associated with operations are stored in special memory units 

inaccessible by the programmer as Control Words. 
 Control signals are generated by a program are similar to machine language 

programs. 
 Micro-programmed control unit is slower in speed because of the time it takes to 

fetch microinstructions from the control memory. 
Some Important Terms – 
 

 
 

1. Control Word : A control word is a word whose individual bits represent various 
control signals. 

2. Micro-routine : A sequence of control words corresponding to the control 
sequence of a machine instruction constitutes the micro-routine for that instruction. 

3. Micro-instruction : Individual control words in this micro-routine are referred to as 
microinstructions. 

4. Micro-program : A sequence of micro-instructions is called a micro-program, which 
is stored in a ROM or RAM called a Control Memory (CM). 

5. Control Store : the micro-routines for all instructions in the instruction set of a 
computer are stored in a special memory called the Control Store. 

 



 

Types of Micro-programmed Control Unit – Based on the type of Control Word 
stored in the Control Memory (CM), it is classified into two types : 
1. Horizontal Micro-programmed control Unit : 
The control signals are represented in the decoded binary format that is 1 bit/CS. 
Example: If 53 Control signals are present in the processor than 53 bits are required. 
More than 1 control signal can be enabled at a time. 
 It supports longer control word. 
 It is used in parallel processing applications. 
 It allows higher degree of parallelism. If degree is n, n CS are enabled at a time. 
 It requires no additional hardware(decoders). It means it is faster than Vertical 

Microprogrammed. 
 It is more flexible than vertical microprogrammed 
2. Vertical Micro-programmed control Unit : 
The control signals re represented in the encoded binary format. For N control signals- 
Log2(N) bits are required. 
 It supports shorter control words. 
 It supports easy implementation of new conrol signals therefore it is more flexible. 
 It allows low degree of parallelism i.e., degree of parallelism is either 0 or 1. 
 Requires an additional hardware (decoders) to generate control signals, it implies it 

is slower than horizontal microprogrammed. 
 It is less flexible than horizontal but more flexible than that of hardwired control unit. 

 

 

 

 

 

 

 



UNIT III 

 Memory Organization: Characteristics of Memory Systems:  

Main Memory (RAM) Organisation  

Computers employ many different types of memory (semi-conductor, magnetic disks and 

tapes, DVDs etc.) to hold data and programs. Each type has its own characteristics and uses.  

We will look at the way that Main Memory (RAM) is organised and very briefly at the 

characteristics of Register Memory and Disk Memory.   Let’s locate these 3 types of memory 

in an abstract computer: 

 

Register Memory 

 
Registers are memories located within the Central Processing Unit (CPU).   They are few in 

number (there are rarely more than 64 registers) and also small in size, typically a register is 

less than 64 bits; 32-bit and more recently 64-bit are common in desktops.  

The contents of a register can be “read” or “written” very quickly1 however, often an order of 

magnitude faster than main memory and several orders of magnitude faster than disk 

memory.   

Different kinds of register are found within the CPU.  General Purpose Registers2 are 

available for general3 use by the programmer.  Unless the context implies otherwise we’ll use 

the term "register" to refer to a General Purpose Register within the CPU.  Most modern 

CPU’s have between 16 and 64 general purpose registers.  Special Purpose Registers have 

specific uses and are either non-programmable and internal to the CPU or accessed with 

special instructions by the programmer.  Examples of such registers that we will encounter 

later in the course include: the Program Counter register (PC), the Instruction Register (IR), 

the ALU Input & Output registers, the Condition Code (Status/Flags) register, the Stack 

Pointer register (SP). The size (the number of bits in the register) of the these registers varies 

according to register type. The Word Size of an architecture is often (but not always!) defined 

by the size of the general purpose registers. 

                                                             

1 e.g. less than a nanosecond (10
-9

 sec) 
2 Occasionally called Working Registers 
3 Used for performing calculations, moving and manipulating data etc. 

Disk DriveDisk Drive

Registers

Arithmetic & Logic 
Unit

Control 
Unit

RAM

Controller(s)

CPU Main Memory

I/O

RAM

Disk Drive



In contrast to main memory and disk memory, registers are referenced directly by specific 

instructions or by encoding a register number within a computer instruction.  At the 

programming (assembly) language level of the CPU, registers are normally specified with 

special identifiers (e.g. R0, R1, R7, SP, PC) 

As a final point, the contents of a register are lost if power to the CPU is turned off, so 

registers are unsuitable for holding long-term information or information that is needed for 

retention after a power-shutdown or failure. Registers are however, the fastest memories, and 

if exploited can result in programs that execute very quickly. 

Main Memory (RAM) 

 

If we were to sum all the bits of all registers within CPU, the total amount of memory 

probably would not exceed 5,000 bits.  Most computational tasks undertaken by a computer 

require a lot more memory.  Main memory is the next4 fastest memory within a computer and 

is much larger in size.  Typical main memory capacities for different kinds of computers are: 

PC 512MB5, fileserver 2GB, database server 8GB.  Computer architectures also impose an 

architectural constraint on the maximum allowable RAM.  This constraint is normally equal 

to 2
WordSize

 memory locations. 

RAM6 (Random7 Access Memory) is the most common form of Main Memory.  RAM is 

normally located on the motherboard and so is typically less than 12 inches from the CPU.  

ROM (Read Only Memory) is like RAM except that its contents cannot be overwritten and 

its contents are not lost if power is turned off (ROM is non-volatile). 

Although slower than register memory, the contents of any location8 in RAM can still be 

“read” or “written” very quickly9.  The time to read or write is referred to as the access time 

and is constant for all RAM locations. 

In contrast to register memory, RAM is used to hold both program code (instructions) and 

data (numbers, strings etc).  Programs are “loaded” into RAM from a disk prior to execution 

by the CPU. 

Locations in RAM are identified by an addressing scheme e.g. numbering the bytes in RAM 

from 0 onwards10.   Like registers, the contents of RAM are lost if the power is turned off. 

Disk Memory 

 
Disk memory11 is used to hold programs and data over the longer term.  The contents of a 

disk are NOT lost if the power is turned off.   Typical hard disk capacities range from 

40GB to over 500 GB (5x10
29

).  Disks are much slower than register and main memory, the 

access-time (known as the seek-time) to data on disk is typically between 2 and 4 milli-

                                                             
4 Actually many computers systems also include Cache memory, which is faster than Main memory, but 

slower than register memory.  We will ignore Cache memories in this course. 

5 1K = 2
10

= 1024, 1M = 2
20

, 1G = 2
30 

,     ‘B’ will be used for Bytes, and ‘b’ or ‘bit’ for bits, cf. 1MB and 

1Mbit 
6 There are many types of RAM technologies. 
7 Random is a Misnomer.  Direct Access Memory would have been a better term. 
8 Typically a byte multiple. 

9 e.g. less than 10 nanoseconds (10x10
-9

 sec) 
10 Some RAM locations (typically those with the lowest & highest addresses) may cause side-effects, e.g. 

cause data to be transferred to/from external devices 
11 Some authors refer to disk memory as disk storage. 



seconds, although disk drives can transfer thousands of bytes in one go achieving transfer 

rates from 25MB/s to 500MB/s. 

 

Disks can be housed internally within a computer “box” or externally in an enclosure 

connected by a fast USB or firewire cable12. Disk locations are identified by special disk 

addressing schemes (e.g. track and sector numbers). 

Summary of Characteristics 

 

SRAM, DRAM, SDRAM, DDR SDRAM 
 

There are many kinds of RAM and new ones are invented all the time.  One of aims is to 

make RAM access as fast as possible in order to keep up with the increasing speed of CPUs. 

SRAM (Static RAM) is the fastest form of RAM but also the most expensive.  Due to its cost 

it is not used as main memory but rather for cache memory.  Each bit requires a 6-transistor 

circuit.   

DRAM (Dynamic RAM) is not as fast as SRAM but is cheaper and is used for main memory.  

Each bit uses a single capacitor and single transistor circuit. Since capacitors lose their 

charge, DRAM needs to be refreshed every few milliseconds. The memory system does this 

transparently.  There are many implementations of DRAM, two well-known ones are 

SDRAM and DDR SDRAM. 

SDRAM (Synchronous DRAM) is a form of DRAM that is synchronised with the clock of 

the CPU’s system bus, sometimes called the front-side bus (FSB).  As an example, if the 

system bus operates at 167Mhz over an 8-byte (64-bit) data bus , then an SDRAM module 

could transfer 167 x 8 ~ 1.3GB/sec.   

DDR SDRAM (Double-Data Rate DRAM) is an optimisation of SDRAM that allows data to 

be transferred on both the rising edge and falling edge of a clock signal. Effectively doubling 

                                                             
12 For details about how disks and other storage devices work, check out Tanenbaum or Stallings. 



the amount of data that can be transferred in a period of time. For example a PC-3200 DDR-

SDRAM module operating at 200Mhz can transfer 200 x 8 x 2 ~ 3.2GB/sec over an 8-byte 

(64-bit) data bus. 

ROM, PROM, EPROM, EEPROM, Flash 

 

In addition to RAM, they are also a range of other semi-conductor memories that retain their 

contents when the power supply is switched off. 

ROM (Read Only Memory) is a form of semi-conductor that can be written to once, typically 

in bulk at a factory.  ROM was used to store the “boot” or start-up program (so called 

firmware) that a computer executes when powered on, although it has now fallen out-of-

favour to more flexible memories that support occasional writes.  ROM is still used in 

systems with fixed functionalities, e.g. controllers in cars, household appliances etc.   

PROM (Programmable ROM) is like ROM but allows end-users to write their own programs 

and data.  It requires a special PROM writing equipment.  Note: users can only write-once to 

PROM. 

EPROM (Erasable PROM). With EPROM we can erase (using strong ultra-violet light) the 

contents of the chip and rewrite it with new contents, typically several thousand times. It is 

commonly used to store the “boot” program of a computer, known as the firmware.  PCs call 

this firmware, the BIOS (Basic I/O System). Other systems use Open Firmware. Intel-based 

Macs use EFI (Extensible Firmware Interface).   

EEPROM (Electrically Erasable PROM). As the name implies the contents of EEPROMs are 

erased electrically.  EEPROMSs are also limited to the number of erase-writes that can be 

performed  (e.g, 100,000) but support updates (erase-writes) to individual bytes whereas 

EPROM updates the whole memory and only supports around 10,000 erase-write cycles.  

FLASH memory is a cheaper form of EEPROM where updates (erase-writes) can only be 

performed on blocks of memory, not on individual bytes.  Flash memories are found in USB 

sticks, flash cards and typically range in size from 32M to 2GB.  The number of erase/write 

cycles to a block is typically several hundred thousand before the block can no longer be 

written. 

 

 

 

 Types of Memory: 

 



 Design of memory subsystem using  Static, Dynamic Memory chips: 

Memory Modules, Memory Chips 

 
So far, we have looked at the logical organisation of main memory.  Physically RAM comes 

on small memory modules (little green printed circuit-boards about the size of a finger). A 

typical memory module holds 512MB to 2GB. The computer’s motherboard will have slots 

to hold 2, 4 maybe 8 memory modules.  Each memory module is itself comprised of several 

memory chips. For example here are 3 ways of forming a 256x8 bit memory module.   

 
 

In the first case, main memory is built with a single memory chip. In the second, we use two 

memory chips, one gives us the most significant 4 bits, the other, the least significant 4 bits.  

In the third we use 8 memory chips, each chip gives us 1 bit - to read an 8 bit memory word, 

we would have to access all 8 memory chips simultaneously and concatenate the bits.   

 

On PCs, memory modules are known as DIMMs (dual inline memory modules) and support 

64-bit transfers.  The previously generation of modules were called SIMMs (single inline 

memory modules)  and supported 32-bit data transfers.  

Example:  Given Main Memory = 1M x 16 bit (word addressable),   

  RAM chips = 256K x 4 bit 

 Module 0  Module 1  Module 2  Module 3 





 

2
18 



 

 
C 
H 
I 
P 
0 
 

 
C 
H 
I 
P 
1 

 
C 
H 
I 
P 
2 

 
C 
H 
I 
P 
3 

 
 
 
 

 
C 
H 
I 
P 
4 

 
C 
H 
I 
P 
5 

 
C 
H 
I 
P 
6 

 
C 
H 
I 
P 
7 

   
   
 
 

 
C 
H 
I 
P 
8 

 
C 
H 
I 
P 
9 

 
C 
H 
I 
P 
10 

 
C 
H 
I 
P 
11 

   
   
 
 

 
C 
H 
I 
P 
12 

 
C 
H 
I 
P 
13 

 
C 
H 
I 
P 
14 

 
C 
H 
I 
P 
15 

 4x4 bits  4x4 bits  4x4 bits  4x4 bits 
 

      RAM chips per memory module = Width of Memory Word  = 16/4 = 4 

 Width of RAM Chip  

 

18 bits are required to address a RAM chip (since 256K = 2
18

 = Length of RAM Chip ) 

1

1
1

1
0

0

1
1

Eight 
256 x 1bit RAMs

1

1
1

1

0
0

1
1

256 x 

4bit 

RAM
256 x 

4bit 

RAM256 x 8bit R
AM

1

1

1

0

1
1

1

0



A 1Mx16 bit word-addressed memory requires 20 address bits (since 1M =2
20

 ) 

Therefore 2 bits (=20–18) are needed to select a module. 

The total number of RAM Chips = (1M x 16) / (256K x 4) = 16.    

Total number of Modules = Total number of RAM chips / RamChipsPerModule = 16/4 = 4 

Interleaved Memory 

 

When memory consists of several memory modules, some address bits will select the 

module, and the remaining bits will select a row within the selected module.   

When the module selection bits are the least significant bits of the memory address we 

call the resulting memory a low-order interleaved memory.    

When the module selection bits are the most significant bits of the memory address we 

call the resulting memory a high-order interleaved memory.    

Interleaved memory can yield performance advantages if more than one memory module can 

be read/written at a time:- 

(I) for low-order interleave if we can read the same row in each module. This is good for 

a single multi-word access of sequential data such as program instructions, or 

elements in a vector,   

(ii) for high-order interleave, if different modules can be independently accessed by 

different units. This is good if the CPU can access rows in one module, while at the 

same time, the hard disk (or a second CPU) can access different rows in another 

module. 

Example:   Given that Main Memory = 1Mx8bits,  RAM chips = 256K x 4bit. For this 

memory we would require 4x2=8 RAM chips.  Each chip would require 18 address bits  (ie. 

2
18

 = 256K) and the full 1Mx16 bit memory would requires 20 address bits  (ie. 2
20

 = 1M ) 

High Speed Memories: 

 Cache Memory: 

Cache Memory in Computer Organization: 

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing 

with high-speed CPU. Cache memory is costlier than main memory or disk memory but 

economical than CPU registers. Cache memory is an extremely fast memory type that acts as a 

buffer between RAM and the CPU. It holds frequently requested data and instructions so that 

they are immediately available to the CPU when needed. 

Cache memory is used to reduce the average time to access data from the Main memory. The 

cache is a smaller and faster memory which stores copies of the data from frequently used main 

memory locations. There are various different independent caches in a CPU, which store 

instructions and data. 

Elements of Cache Design: 

Levels of memory: 
 Level 1 or Register – 

It is a type of memory in which data is stored and accepted that are immediately 
stored in CPU. Most commonly used register is accumulator, Program counter, 
address register etc. 



 Level 2 or Cache memory – 
It is the fastest memory which has faster access time where data is temporarily 
stored for faster access. 

 Level 3 or Main Memory – 
It is memory on which computer works currently. It is small in size and once power 
is off data no longer stays in this memory. 

 Level 4 or Secondary Memory – 
It is external memory which is not as fast as main memory but data stays 
permanently in this memory. 

Cache Performance: 

When the processor needs to read or write a location in main memory, it first checks 

for a corresponding entry in the cache. 

 If the processor finds that the memory location is in the cache, a cache hit has 
occurred and data is read from cache 

 If the processor does not find the memory location in the cache, a cache miss has 
occurred. For a cache miss, the cache allocates a new entry and copies in data 
from main memory, then the request is fulfilled from the contents of the cache. 

The performance of cache memory is frequently measured in terms of a quantity 
called Hit ratio. 

Hit ratio = hit / (hit + miss) =  no. of hits/total accesses 

We can improve Cache performance using higher cache block size, higher 
associativity, reduce miss rate, reduce miss penalty, and reduce the time to hit in the 
cache. 

 

 Structure of cache and main memory: 

 

 

 

 Mapping functions: 

Cache Mapping: 
There are three different types of mapping used for the purpose of cache memory 
which are as follows: Direct mapping, Associative mapping, and Set-Associative 
mapping. These are explained below. 
1. Direct Mapping – 

The simplest technique, known as direct mapping, maps each block of main 
memory into only one possible cache line. or 
In Direct mapping, assigne each memory block to a specific line in the cache. If a 
line is previously taken up by a memory block when a new block needs to be 
loaded, the old block is trashed. An address space is split into two parts index field 
and a tag field. The cache is used to store the tag field whereas the rest is stored in 



the main memory. Direct mapping`s performance is directly proportional to the Hit 
ratio. 

2. i = j modulo m 

3. where 

4. i=cache line number 

5. j= main memory block number 

m=number of lines in the cache 

For purposes of cache access, each main memory address can be viewed as 
consisting of three fields. The least significant w bits identify a unique word or byte 
within a block of main memory. In most contemporary machines, the address is at 
the byte level. The remaining s bits specify one of the 2s blocks of main memory. 
The cache logic interprets these s bits as a tag of s-r bits (most significant portion) 
and a line field of r bits. This latter field identifies one of the m=2 r lines of the cache. 

 

Associative Mapping – 

In this type of mapping, the associative memory is used to store content and 

addresses of the memory word. Any block can go into any line of the cache. This 

means that the word id bits are used to identify which word in the block is needed, but 

the tag becomes all of the remaining bits. This enables the placement of any word at 

any place in the cache memory. It is considered to be the fastest and the most flexible 

mapping form. 



 

Set-associative Mapping – 

This form of mapping is an enhanced form of direct mapping where the drawbacks of 
direct mapping are removed. Set associative addresses the problem of possible 
thrashing in the direct mapping method. It does this by saying that instead of having 
exactly one line that a block can map to in the cache, we will group a few lines together 
creating a set. Then a block in memory can map to any one of the lines of a specific 
set..Set-associative mapping allows that each word that is present in the cache can 
have two or more words in the main memory for the same index address. Set 
associative cache mapping combines the best of direct and associative cache mapping 
techniques. 
In this case, the cache consists of a number of sets, each of which consists of a 
number of lines. The relationships are 

m = v * k 

i= j mod v 

 

where 

i=cache set number 

j=main memory block number 

v=number of sets 

m=number of lines in the cache number of sets  

k=number of lines in each set  



 

Application of Cache Memory – 

1. Usually, the cache memory can store a reasonable number of blocks at any given 
time, but this number is small compared to the total number of blocks in the main 
memory. 

2. The correspondence between the main memory blocks and those in the cache is 
specified by a mapping function. 

 
 
Types of Cache – 
 Primary Cache – 

A primary cache is always located on the processor chip. This cache is small and 
its access time is comparable to that of processor registers. 

 Secondary Cache – 
Secondary cache is placed between the primary cache and the rest of the memory. 
It is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also housed 
on the processor chip. 

 

 Replacement algorithms: 

In an operating system that uses paging for memory management, a page replacement algorithm 

is needed to decide which page needs to be replaced when new page comes in. 

Page Fault – A page fault happens when a running program accesses a memory page that is 

mapped into the virtual address space, but not loaded in physical memory. 

Since actual physical memory is much smaller than virtual memory, page faults happen. In case 

of page fault, Operating System might have to replace one of the existing pages with the newly 

needed page. Different page replacement algorithms suggest different ways to decide which page 

to replace. The target for all algorithms is to reduce the number of page faults. 

Page Replacement Algorithms: 
 

First In First Out (FIFO)  

This is the simplest page replacement algorithm. In this algorithm, the operating system keeps 

track of all pages in the memory in a queue, the oldest page is in the front of the queue. When 

a page needs to be replaced page in the front of the queue is selected for removal. 

 

Example-1Consider page reference string 1, 3, 0, 3, 5, 6 with 3 page frames.Find 

number of page faults. 



 

 Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty 
slots —> 3 Page Faults. 
when 3 comes, it is already in  memory so —> 0 Page Faults. 
Then 5 comes, it is not available in  memory so it replaces the oldest page slot i.e 
1. —>1 Page Fault. 
6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 
—>1 Page Fault. 
 

 Finally when 3 come it is not avilable so it replaces 0 1 page fault 
Belady’s anomaly – Belady’s anomaly proves that it is possible to have more page 
faults when increasing the number of page frames while using the First in First Out 
(FIFO) page replacement algorithm.  For example, if we consider reference string 
3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3 slots, we get 9 total page faults, but if we 
increase slots to 4, we get 10 page faults. 
 
 

2.Optimal Page replacement : 
 
In this algorithm, pages are replaced which would not be used for the longest 
duration of time in the future. 
Example-2:Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 
page frame. Find number of page fault. 

https://www.geeksforgeeks.org/operating-system-beladys-anomaly/


 

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 
Page faults 
0 is already there so —> 0 Page fault. 
when 3 came it will take the place of 7 because it is not used for the longest 
duration of time in the future.—>1 Page fault. 
0 is already there so —> 0 Page fault.. 
4 will takes place of 1 —> 1 Page Fault. 
 
Now for the further page reference string —> 0 Page fault because they are 
already available in the memory. 
Optimal page replacement is perfect, but not possible in practice as the operating 
system cannot know future requests. The use of Optimal Page replacement is to 
set up a benchmark so that other replacement algorithms can be analyzed against 
it. 

  

3.Least Recently Used : 
In this algorithm page will be replaced which is least recently used. 
Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 
4 page frames.Find number of page faults. 

 

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 

Page faults 

0 is already their so —> 0 Page fault. 



when 3 came it will take the place of 7 because it is least recently used —>1 Page 

fault 

0 is already in memory so —> 0 Page fault. 

4 will takes place of 1 —> 1 Page Fault 

Now for the further page reference string —> 0 Page fault because they are already 

available in the memory. 

 External Memory: 

Types of External Memory 

 Magnetic Disk 

 RAID Removable Optical  

CD-ROM CD-Writable  

(WORM) CD-R/W DVD  

Magnetic Tape 

 Virtual memory: 

Physical and virtual memory are forms of memory (internal storage of data). Physical 

memory exists on chips (RAM memory) and on storage devices such as hard disks. 

... Virtual memory is a process whereby data (e.g., programming code,) can be rapidly 

exchanged between physical memory storage locations and RAM memory. 

Virtual memory: 

 



 

 

 

 

 

 

UNIT IV  

I/O Organization: 

Introduction of Input-Output Processor: 

The DMA mode of data transfer reduces CPU’s overhead in handling I/O operations. It also 

allows parallelism in CPU and I/O operations. Such parallelism is necessary to avoid wastage of 

valuable CPU time while handling I/O devices whose speeds are much slower as compared to 

CPU. The concept of DMA operation can be extended to relieve the CPU further from getting 

involved with the execution of I/O operations. This gives rises to the development of special 

purpose processor called Input-Output Processor (IOP) or IO channel. 

The Input Output Processor (IOP) is just like a CPU that handles the details of I/O operations. It 

is more equipped with facilities than those are available in typical DMA controller. The IOP can 

fetch and execute its own instructions that are specifically designed to characterize I/O transfers. 

In addition to the I/O – related tasks, it can perform other processing tasks like arithmetic, logic, 

branching and code translation. The main memory unit takes the pivotal role. It communicates 

with processor by the means of DMA. 

The block diagram – 

 
 



The Input Output Processor is a specialized processor which loads and stores data into memory 

along with the execution of I/O instructions. It acts as an interface between system and devices. It 

involves a sequence of events to executing I/O operations and then store the results into the 

memory. 

Advantages – 
 The I/O devices can directly access the main memory without the intervention by the 

processor in I/O processor based systems. 

 It is used to address the problems that are arises in Direct memory access method. 

 

 Input / Output Module: 

 Need, Techniques Interrupt Driven I/O: 

Interrupt driven I/O is an alternative scheme dealing with I/O. Interrupt I/O 

is a way of controlling input/output activity whereby a peripheral or terminal 

that needs to make or receive a data transfer sends a signal. This will 

cause a program interrupt to be set. At a time appropriate to the priority 

level of the I/O interrupt. Relative to the total interrupt system, the 

processors enter an interrupt service routine. The function of the routine will 

depend upon the system of interrupt levels and priorities that is 

implemented in the processor. The interrupt technique requires more 

complex hardware and software, but makes far more efficient use of 

the computer’s time and capacities. Figure 2 shows the simple interrupt 

processing.  

For input, the device interrupts the CPU when new data has arrived and is ready to 

be retrieved by the system processor. The actual actions to perform depend on 
whether the device uses I/O ports or memory mapping. 
 

For output, the device delivers an interrupt either when it is ready to accept new 
data or to acknowledge a successful data transfer. Memory-mapped and DMA-
capable devices usually generate interrupts to tell the system they are done with the 
buffer. 
Here the CPU works on its given tasks continuously. When an input is available, 
such as when someone types a key on the keyboard, then the CPU is interrupted 
from its work to take care of the input data. The CPU can work continuously on a 
task without checking the input devices, allowing the devices themselves to interrupt 
it as necessary. 

Basic Operations of Interrupt 
 

1. CPU issues read command. 
2. I/O module gets data from peripheral whilst CPU does other work. 

3. I/O module interrupts CPU. 
4. CPU requests data. 

5. I/O module transfers data. 

Interrupt Processing 
 

1. A device driver initiates an I/O request on behalf of a process. 

2. The device driver signals the I/O controller for the proper device, which initiates the requested I/O. 

3. The device signals the I/O controller that is ready to retrieve input, the output is complete or that an error has been 

generated. 



4. The CPU receives the interrupt signal on the interrupt-request line and transfer control over the interrupt handler 

routine. 

5. The interrupt handler determines the cause of the interrupt, performs the necessary processing and executes a “return 

from” interrupt instruction. 

6. The CPU returns to the execution state prior to the interrupt being signaled. 

7. The CPU continues processing until the cycle begins again. 

 

 Basic concepts of an Interrupt : 

Interrupt is the mechanism by which modules like I/O or memory may interrupt the normal 

processing by CPU. It may be either clicking a mouse, dragging a cursor, printing a document 
etc the case where interrupt is getting generated. 
Why we require Interrupt? 
External devices are comparatively slower than CPU. So if there is no interrupt CPU would 
waste a lot of time waiting for external devices to match its speed with that of CPU. This 
decreases the efficiency of CPU. Hence, interrupt is required to eliminate these limitations. 
With Interrupt: 

Response of CPU to an Interrupt: 

1. Suppose CPU instructs printer to print a certain document. 
2. While printer does its task, CPU engaged in executing other tasks. 
3. When printer is done with its given work, it tells CPU that it has done with its work. 

(The word ‘tells’ here is interrupt which sends one message that printer has done its work 
successfully.). 

Advantages: 

 It increases the efficiency of CPU. 
 It decreases the waiting time of CPU. 
 Stops the wastage of instruction cycle. 
Disadvantages: 

 CPU has to do a lot of work to handle interrupts, resume its previous execution of programs 
(in short, overhead required to handle the interrupt request.). 

 



 Design Issues: 

Design Issues 
 

There are 2 main problems for interrupt I/O, which are: 
 

 There are multiple I/O modules, how should the processor determine the 
device that issued the interrupt signal? 

 How does the processor decide which module to process when multiple 
interrupts have occurred? 

There are 4 main ways to counter these problems, which are: 
 

 Multiple Interrupt Lines 

 Software Poll 
 Daisy Chain (Hardware Poll, Vectored) 

 Bus Arbitration (Vectored) 

 

Difference between Maskable and Non Maskable Interrupt 

An interrupt is an event caused by a component other than the CPU. It indicates the CPU of an external 

event that requires immediate attention. Interrupts occur asynchronously. Maskable and non-maskable 

interrupts are two types of interrupts. 

1. Maskable Interrupt : 
An Interrupt that can be disabled or ignored by the instructions of CPU are called as Maskable 

Interrupt.The interrupts are either edge-triggered or level-triggered or level-triggered. 

Eg:  

RST6.5,RST7.5,RST5.5 of 8085  

2. Non-Maskable Interrupt : 
An interrupt that cannot be disabled or ignored by the instructions of CPU are called as Non-Maskable 

Interrupt.A Non-maskable interrupt is often used when response time is critical or when an interrupt 

should never be disable during normal system operation. Such uses include reporting non-recoverable 

hardware errors, system debugging and profiling and handling of species cases like system resets. 

Eg: 

Trap of 8085  

 

 

Difference between maskable and nonmaskable interrupt : 

SR.NO. Maskable Interrupt Non Maskable Interrupt 

1 

Maskable interrupt is a 

hardware Interrupt that 

can be disabled or 

ignored by the 

instructions of CPU. 

A non-maskable interrupt is a 

hardware interrupt that cannot 

be disabled or ignored by the 

instructions of CPU. 

2 
When maskable interrupt When non-maskable interrupts 

https://www.geeksforgeeks.org/interrupts-8085-microprocessor/


SR.NO. Maskable Interrupt Non Maskable Interrupt 

occur, it can be handled 

after executing the 

current instruction. 

occur, the current instructions 

and status are stored in stack for 

the CPU to handle the interrupt. 

3 

Maskable interrupts help 

to handle lower priority 

tasks. 

Non-maskable interrupt help to 

handle higher priority tasks such 

as watchdog timer. 

4 

Maskable interrupts used 

to interface with 

peripheral device. 

Non maskable interrupt used for 

emergency purpose e.g power 

failure, smoke detector etc . 

5 

In maskable interrupts, 

response time is high. 

In non maskable interrupts, 

response time is low. 

6 

It may be vectored or 

non-vectored. All are vectored interrupts. 

7 

Operation can be masked 

or made pending. 

Operation Cannot be masked or 

made pending. 

8 

RST6.5, RST7.5, and 

RST5.5 of 8085 are some 

common examples of 

maskable Interrupts. 

Trap of 8085 microprocessor is 

an example for non-maskable 

interrupt. 

Priorities, Interrupt handling: 

Priority Interrupts | (S/W Polling and Daisy Chaining) 

In I/O Interface (Interrupt and DMA Mode), we have discussed concept behind the Interrupt-initiated I/O. 

To summarize, when I/O devices are ready for I/O transfer, they generate an interrupt request signal to the 

computer. The CPU receives this signal, suspends the current instructions it is executing and then moves 

forward to service that transfer request. But what if multiple devices generate interrupts simultaneously. In 

that case, we have to have a way to decide which interrupt is to be serviced first. In other words, we have 

to set a priority among all the devices for systemic interrupt servicing. 

The concept of defining the priority among devices so as to know which one is to be serviced first in case 

of simultaneous requests is called priority interrupt system. This could be done with either software or 

hardware methods. 

https://www.geeksforgeeks.org/io-interface-interrupt-dma-mode/


SOFTWARE METHOD – POLLING 

In this method, all interrupts are serviced by branching to the same service program. This program then 

checks with each device if it is the one generating the interrupt. The order of checking is determined by the 

priority that has to be set. The device having the highest priority is checked first and then devices are 

checked in descending order of priority. If the device is checked to be generating the interrupt, another 

service program is called which works specifically for that particular device. 

The structure will look something like this- 

if (device[0].flag) 

    device[0].service(); 

else if (device[1].flag) 

    device[1].service(); 

. 

. 

else 

    //raise error 

The major disadvantage of this method is that it is quite slow. To overcome this, we can use hardware 

solution, one of which involves connecting the devices in series. This is called Daisy-chaining method. 

 

HARDWARE METHOD – DAISY CHAINING 

The daisy-chaining method involves connecting all the devices that can request an interrupt in a serial 

manner. This configuration is governed by the priority of the devices. The device with the highest priority 

is placed first followed by the second highest priority device and so on. The given figure depicts this 

arrangement. 

 

WORKING: 

There is an interrupt request line which is common to all the devices and goes into the CPU. 
 When no interrupts are pending, the line is in HIGH state. But if any of the devices raises an 

interrupt, it places the interrupt request line in the LOW state. 
 The CPU acknowledges this interrupt request from the line and then enables the interrupt 

acknowledge line in response to the request. 



 This signal is received at the PI(Priority in) input of device 1. 
 If the device has not requested the interrupt, it passes this signal to the next device through 

its PO(priority out) output. (PI = 1 & PO = 1) 
 However, if the device had requested the interrupt, (PI =1 & PO = 0) 

 The device consumes the acknowledge signal and block its further use by 
placing 0 at its PO(priority out) output. 

 The device then proceeds to place its interrupt vector address(VAD) into the data 
bus of CPU. 

 The device puts its interrupt request signal in HIGH state to indicate its interrupt 
has been taken care of. 

NOTE: VAD is the address of the service routine which services that device. 

 If a device gets 0 at its PI input, it generates 0 at the PO output to tell other devices that 
acknowledge signal has been blocked. (PI = 0 & PO = 0) 

Hence, the device having PI = 1 and PO = 0 is the highest priority device that is requesting an 
interrupt. Therefore, by daisy chain arrangement we have ensured that the highest priority 
interrupt gets serviced first and have established a hierarchy. The farther a device is from the 
first device, the lower its priority. 

 

Types Interrupt: 

Hardware and Software  

1. Hardware Interrupt : 

Hardware Interrupt is caused by some hardware device such as request to start an I/O, a 
hardware failure or something similar. Hardware interrupts were introduced as a way to avoid 
wasting the processor’s valuable time in polling loops, waiting for external events. 
For example, when an I/O operation is completed such as reading some data into the 
computer from a tape drive. 

2. Software Interrupt : 

Software Interrupt is invoked by the use of INT instruction. This event immediately stops 
execution of the program and passes execution over to the INT handler. The INT handler is 
usually a part of the operating system and determines the action to be taken. It occurs when an 
application program terminates or requests certain services from the operating system. 
For example, output to the screen, execute file etc. 

 Data Transfer Techniques: 

Synchronous and Asynchronous Data Transfer: 

Computer Organization | Asynchronous input output 

synchronization: 

Asynchronous input output is a form of input output processing that allows others devices to do processing 

before the transmission or data transfer is done. 

Problem faced in asynchronous input output synchronization – 

It is not sure that the data on the data bus is fresh or not as their no time slot for sending or receiving data. 

This problem is solved by following mechanism: 

1. Strobe 

2. Handshaking 

Data is transferred from source to destination through data bus in between. 

1. Strobe Mechanism: 
1. Source initiated Strobe – When source initiates the process of data transfer. Strobe is just a signal. 



 

(i) First, source puts data on the data bus and ON the strobe signal. 
(ii) Destination on seeing the ON signal of strobe, read data from the data bus. 
(iii) After reading data from the data bus by destination, strobe gets OFF. 

Signals can be seen as: 

 

(i) First, source puts data on the data bus and ON the strobe signal. 
(ii) Destination on seeing the ON signal of strobe, read data from the data bus. 
(iii) After reading data from the data bus by destination, strobe gets OFF. 

Signals can be seen as: 

1. It shows that first data is put on the data bus and then strobe signal gets active. 

2. Destination initiated signal – When destination initiates the process of data transfer. 

 

i) First, the destination ON the strobe signal to ensure the source to put the fresh data on the 
data bus. 
(ii) Source on seeing the ON signal puts fresh data on the data bus. 
(iii) Destination reads the data from the data bus and strobe gets OFF signal. 

Signals can be seen as: 



 

2. Handshaking Mechanism: 
1. Source initiated Handshaking – When source initiates the data transfer process. It 

consists of signals: 
DATA VALID: if ON tells data on the data bus is valid otherwise invalid. 
DATA ACCEPTED: if ON tells data is accepted otherwise not accepted. 

 

(i) Source places data on the data bus and enable Data valid signal. 
(ii) Destination accepts data from the data bus and enable Data accepted signal.  
(iii) After this, disable Data valid signal means data on data bus is invalid now. 
(iv) Disable Data accepted signal and the process ends. 

Now there is surety that destination has read the data from the data bus through data accepted 
signal. 

Signals can be seen as: 



 

1. It shows that first data is put on the data bus then data valid signal gets active and then 
data accepted signal gets active. After accepting the data, first data valid signal gets off 
then data accepted signal gets off. 

2. Destination initiated Handshaking – When destination initiates the process of data 
transfer. 
REQUEST FOR DATA: if ON requests for putting data on the data bus. 
DATA VALID: if ON tells data is valid on the data bus otherwise invalid data. 

 

Data Memory Access: 

1. Direct Memory Access: The data transfer between a fast storage media such as magnetic 
disk and memory unit is limited by the speed of the CPU. Thus we can allow the peripherals 
directly communicate with each other using the memory buses, removing the intervention of 
the CPU. This type of data transfer technique is known as DMA or direct memory access. 
During DMA the CPU is idle and it has no control over the memory buses. The DMA 
controller takes over the buses to manage the transfer directly between the I/O devices and 
the memory unit. 



 

Bus Request : It is used by the DMA controller to request the CPU to relinquish the control of 

the buses. 
Bus Grant : It is activated by the CPU to Inform the external DMA controller that the buses are 
in high impedance state and the requesting DMA can take control of the buses. Once the DMA 
has taken the control of the buses it transfers the data. This transfer can take place in many 
ways. 
Types of DMA transfer using DMA controller: 
Burst Transfer : 
DMA returns the bus after complete data transfer. A register is used as a byte count, 
being decremented for each byte transfer, and upon the byte count reaching zero, the DMAC 
will 
release the bus. When the DMAC operates in burst mode, the CPU is halted for the duration of 
the data 
transfer. 
Steps involved are: 
1. Bus grant request time. 
2. Transfer the entire block of data at transfer rate of device because the device is usually 

slow than the 
speed at which the data can be transferred to CPU. 

3. Release the control of the bus back to CPU 
So, total time taken to transfer the N bytes 
= Bus grant request time + (N) * (memory transfer rate) + Bus release control time. 

 

I/O Interface : 

The method that is used to transfer information between internal storage and external I/O devices is 

known as I/O interface. The CPU is interfaced using special communication links by the peripherals 

connected to any computer system. These communication links are used to resolve the differences 

between CPU and peripheral. There exists special hardware components between CPU and peripherals 

to supervise and synchronize all the input and output transfers that are called interface units. 

Mode of Transfer: 

The binary information that is received from an external device is usually stored in the memory unit. 

The information that is transferred from the CPU to the external device is originated from the memory 

unit. CPU merely processes the information but the source and target is always the memory unit. Data 

transfer between CPU and the I/O devices may be done in different modes. 

Data transfer to and from the peripherals may be done in any of the three possible ways 

1. Programmed I/O. 

2. Interrupt- initiated I/O. 

3. Direct memory access( DMA). 

Now let’s discuss each mode one by one. 

1. Programmed I/O: It is due to the result of the I/O instructions that are written in the computer 

program. Each data item transfer is initiated by an instruction in the program. Usually the transfer is 



from a CPU register and memory. In this case it requires constant monitoring by the CPU of the 

peripheral devices. 

Example of Programmed I/O: In this case, the I/O device does not have direct access to the memory 

unit. A transfer from I/O device to memory requires the execution of several instructions by the CPU, 

including an input instruction to transfer the data from device to the CPU and store instruction to 

transfer the data from CPU to memory. In programmed I/O, the CPU stays in the program loop until 

the I/O unit indicates that it is ready for data transfer. This is a time consuming process since it 

needlessly keeps the CPU busy. This situation can be avoided by using an interrupt facility. This is 

discussed below. 

 

 

 

 

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy unnecessarily. This 

situation can very well be avoided by using an interrupt driven method for data transfer. By using 

interrupt facility and special commands to inform the interface to issue an interrupt request signal 

whenever data is available from any device. In the meantime the CPU can proceed for any other 

program execution. The interface meanwhile keeps monitoring the device. Whenever it is determined 

that the device is ready for data transfer it initiates an interrupt request signal to the computer. Upon 

detection of an external interrupt signal the CPU stops momentarily the task that it was already 

performing, branches to the service program to process the I/O transfer, and then return to the task it 

was originally performing. 

 

Note: Both the methods programmed I/O and Interrupt-driven I/O require the active intervention of 

the 

processor to transfer data between memory and the I/O module, and any data transfer must 

transverse 

a path through the processor. Thus both these forms of I/O suffer from two inherent drawbacks. 

o The I/O transfer rate is limited by the speed with which the processor can test and service a 

device. 

o The processor is tied up in managing an I/O transfer; a number of instructions must be executed 

for each I/O transfer. 

3. Direct Memory Access: The data transfer between a fast storage media such as magnetic disk and 

memory unit is limited by the speed of the CPU. Thus we can allow the peripherals directly 

communicate with each other using the memory buses, removing the intervention of the CPU. This 

type of data transfer technique is known as DMA or direct memory access. During DMA the CPU is 

idle and it has no control over the memory buses. The DMA controller takes over the buses to manage 

the transfer directly between the I/O devices and the memory unit. 

 

 Buses, Types of buses,  



Bus is a group of conducting wires which carries information, all the peripherals are connected 
to microprocessor through Bus. 

Diagram to represent bus organization system of 8085 Microprocessor. 

 

There are three types of buses. 

1. Address bus – 
It is a group of conducting wires which carries address only.Address bus is unidirectional 
because data flow in one direction, from microprocessor to memory or from microprocessor 
to Input/output devices (That is, Out of Microprocessor). 
 
 
Length of Address Bus of 8085 microprocessor is 16 Bit (That is, Four Hexadecimal Digits), 
ranging from 0000 H to FFFF H, (H denotes Hexadecimal). The microprocessor 8085 can 
transfer maximum 16 bit address which means it can address 65, 536 different memory 
location. 

The Length of the address bus determines the amount of memory a system can 
address.Such as a system with a 32-bit address bus can address 2^32 memory locations.If 
each memory location holds one byte, the addressable memory space is 4 GB.However, 
the actual amount of memory that can be accessed is usually much less than this 
theoretical limit due to chipset and motherboard limitations. 

2. Data bus – 
It is a group of conducting wires which carries Data only.Data bus is bidirectional because 
data flow in both directions, from microprocessor to memory or Input/Output devices and 
from memory or Input/Output devices to microprocessor. 
Length of Data Bus of 8085 microprocessor is 8 Bit (That is, two Hexadecimal Digits), 
ranging from 00 H to FF H. (H denotes Hexadecimal). 

When it is write operation, the processor will put the data (to be written) on the data bus, 
when it is read operation, the memory controller will get the data from specific memory 
block and put it into the data bus. 

The width of the data bus is directly related to the largest number that the bus can carry, 
such as an 8 bit bus can represent 2 to the power of 8 unique values, this equates to the 
number 0 to 255.A 16 bit bus can carry 0 to 65535. 

3. Control bus – 
It is a group of conducting wires, which is used to generate timing and control signals to 
control all the associated peripherals, microprocessor uses control bus to process data, that 
is what to do with selected memory location. Some control signals are: 
 Memory read 
 Memory write 
 I/O read 



 I/O Write 
 Opcode fetch 
If one line of control bus may be the read/write line.If the wire is low (no electricity flowing) 
then the memory is read, if the wire is high (electricity is flowing) then the memory is written. 

Serial and parallel transmission: 

In most computer asynchronous mode of data transfer is used in which two component have a different 

clock. Data transfer can occur between data in two ways serial and parallel. In case of parallel multiple 

lines are used to send a single bit whereas in serial transfer each bit is send one at a time. To tell other 

devices when the character/data will be given a concept of start and end bit is used. A start bit is denoted 

by 0 and stop bit is detected when line return to 1-state at least one time, here 1-state means that there is 

not data transfer is occurring. 

When a character is not being sent then line is kept in state 1. Start of character is detected when a 0 is 

sent. The character bit always come after 0 bit. After last bit is sent the state of line to become 1. 

The diagram below shows this concept: 

 

Here earlier state of line was 1 when a character has to be send a 0 is send and character bit 
are transferred. 

Difference between serial and parallel transfer – 

Serial Parallel 

Require single line to send 
data Require multiple line 

Less error and simple 
model 

Error prone and complex 
working 

Economical Expensive 

Slower data transfer Faster data transfer 

Used for long distance used for short distance 

Example:Computer to 
Computer 

Example:Computer to 
Printer 

I/O, Multiprogramming vs. Multiprocessing : 

1. Multiprocessing : 

Multiprocessing is a system that has two or more than one processors. In this, 

CPUs are added for increasing computing speed of the system. Because of 



Multiprocessing, there are many processes that are executed simultaneously. 

Multiprocessing are further classified into two categories: Symmetric 

Multiprocessing, Asymmetric Multiprocessing. 

 
2. Multi-programming : 

Multi-programming is more than one process running at a time, it increases 

CPU utilization by organizing jobs (code and data) so that the CPU always has 

one to execute. The motive is to keep multiple jobs in main memory. If one job 

gets occupied with Input/output, CPU can be assigned to other job. 

 

 

 

 



 

 

UNIT V  

Microprogramming: Basic Principles: 
Features : 

 

Basis Concepts 

 Micro-operations: We have already seen that the programs are executed as a sequence of instructions, each instruction 
consists of a series of steps that make up the instruction cycle fetch, decode, etc. Each of these steps are, in turn, made up of a 

smaller series of steps called micro-operations. 

 Micro-operation execution: Each step of the instruction cycle can be decomposed into micro-operation primitives that are 
performed in a precise time sequence. Each micro-operation is initiated and controlled based on the use of control signals / 

lines coming from the control unit. 

- Controller the data to move from one register to another 

- Controller the activate specific ALU functions 

 Micro-instruction: Each instruction of the processor is translated into a sequence of lower-level micro-instructions. The process 
of translation and execution are to as microprogramming 

 Microprogramming: The concept of microprogramming was developed by Maurice Wilkes in 1951, using diode matrices for the 
memory element. A micro program consist of a sequence of micro-instructions in a microprogramming. 

 Micro programmed Control Unit is a relatively logic circuit that is capable of sequencing through micro-instructions and 
generating control signal to execute each micro-instruction. 

 Control Unit: The control Unit is an important portion of the processor. 

The control unit issues control signals external to the processor to cause data echange with memory and I/O unit. 
The control Unit issues also control signals internal to the processor to move data between registres, to perform 
the ALU and other internal operations in processor. In a hardwired control unit, the control signals are generated 
by a micro-instruction are used to controller register transfers and ALU operations. Control Unit design is then the 
collection and the implementation of all of the needed control signals for the micro-instruction executions. 

Control unit design approaches 

How can we use the concept of microprogramming to implement a Control Unit ? There are two approaches of 
Control Unit Design and implementation: 

- Micro programmed implementation 

- Hardwired logic implementation 

The figure 7.2 illustrated the control unit inputs. Two techniques have been used to implemented the CU. In a 
hardwired implementation, the control unit is essentially considered as a logic circuit. Its input logic signals are 
transformed into the set of output logic signals, which are the control signals. The approach of micro programmed 
implementation is studied in this section. 

 

 



 

Approach of micro programmed control unit 

Principe: 

- The control signal values for each micro operation are stored in a memory. 

- Reading the contents of the control store in a prescribed order is equivalent to sequencing through the micro operations 

- Since the “micro program” of micro operations and their control signal values are stored in memory, this is a micro 
programmed unit. 

Remarks: 

 Are more systematic with a well defined format? 
 Can be easily modified during the design process? 
 Require more components to implement 
 Tend to be slower than hardwired units (due to having to perform memory read operations) 

Approach of hardwired logic 

Principe: 

- The Control Unit is viewed and designed as a combinatorial and sequential logic circuit. 

- The Control Unit is implemented by using any of a variety of “standard” digital logic techniques. The logic circuit generate 
the fixed sequences of control signals 

- This approach is used to generate fixed sequences of control signals with the higher speed. 

Remarks: 

 The principle advantages are a high(er) speed operation and the smaller implementations 
(component counts) 

 The modifications to the design can be hard to do 
 This approach is favored in RISC style designs 

Micro programmed Control Unit 

The ideal of micro programmed Control Unit is that the Control Unit design must include the logics for sequencing through 
micro-operations, for executing micro-operation, for executing micro-instructions, for interpreting opcodes and for making 

decision based on ALU flags. So the design is relatively inflexible. It is difficult to change the design if one wishes to add a 
new machine instruction. 



The principal disadvantage of a micro programmed control unit is that it will be slower than hardwired unit of comparable 
technology. Despite this, microprogramming is the dominant technique for implementing control unit in the contemporary 

CISC processor, due to its ease of implementation. 

The control unit operates by performing consecutive control storage reads to generate the next set of control function 
outputs. Performing the series of control memory accesses is, in effect, executing a program for each instruction in the 
machine’s instruction set -- hence the term microprogramming. 

The two basic tasks performed by a micro programmed control unit are as follows: 

- Micro-instruction sequencing: the micro programmed control unit get the next mico-instruction from the control memory 

- Micro-instruction execution: the micro programmed control unit generate the control signals needed to execute the micro-
instruction. 

The control unit design must consider both affect the format of the micro-instruction and the timing of the control unit. 

Micro-instruction Sequencing 

Two problems are involved in the design of a micro-instruction sequencing technique is the size of micro-
instruction and the address-generation time. The first concern is obvious minimizing the size of the control 
memory. The second concern is simply a desire to execute microinstruction as fast as possible. 

In executing a micro program, the address of the next microinstruction to be executed is one of these categories: 

- Determined by instruction register 

- Next sequential address 

- Branch. 

It is important to design compact time-efficient techniques for micro-instruction branching. 

 Sequencing technique 

Three general categories for a control memory address are as follows: 

- Two address fields 

- Single address field 

- Variable format 

In Figure, the branch control logic with a single address field is illustrated. 

Applications and advantages of microprogramming, Limitations of 

microprogramming: 

What are the advantages and disadvantages of micro programmed control unit 
compared to hardwired control unit? Explain why hardwired control unit is usually used 
for RISC and micro programmed control unit for CISC architectures. Advantages:-The 
decoders and sequencing logic unit of a micro-programmed control unit are very simple 
pieces of logic, compared to the hardwired control unit, which contains complex logic for 
sequencing through the many micro-operations of the instruction cycle. It simplifies the 
design of the control unit. Simpler design means the control unit is cheaper and less 
error-prone to implement-It is also flexible as changes could be easily made to the 
design Principal Disadvantage:-Slower than a hardwired unit of comparable technology 
Hardwired control unit is used for RISC Architecture because hardwired is faster and can 
improve the performance Micro programmed control unit is used for CISC because it 
makes the design simpler and usually in CISC architecture, due to huge number of 
instructions in the instruction set, the control unit is quite complex. Hence it justifies 
using micro programmed control unit 



 

Micro-instruction Execution 

The microinstruction cycle is the basic event on a microprogrammed processor. Each cycle is made up the two 
parts: fetch and execute. This section deals with the execution of microinstruction. The effect of the execution of 
a microinstruction is to generate control signals for both the internal control to processor and the external control 
to processor. 

A organization of a control unit is shown in  

 

Parallel Organization: 

Pipelining 

Basic concepts 

An instruction has a number of stages. The various stages can be worked on simultanously through various 
blocks of production. This is a pipeline. This process is also referred as instruction pipeling. Figure 8.1 shown the 
pipeline of two independent stages: fetch instruction and execusion instruction. The first stage fetches an 
instruction and buffers it. While the second stage is executing the instruction, the first stage takes advantage of 
any unused memory cycles to fetch and buffer the next instruction. This process will speed up instruction 
execution 



 

Pipeline principle 

The decomposition of the instruction processing by 6 stages is the following. 

- Fetch Instruction (FI): Read the next expected introduction into a buffer 

- Decode Instruction (DI): Determine the opcode and the operand specifiers 

- Calculate Operands (CO): Calculate the effective address of each source operand. This may involve 
displacement, register indirect, indirect or other forms of address calculations. 

- Fetch Operands (FO): Fetch each operand from memory. Operands in register need not be fetched. 

- Execute Instruction (EI): Perform the indicated operation and store the result, if any, in the specified destination 
operand location. 

- Write Operand (WO): Store result in memory. 

Using the assumption of the equal duration for various stages, the figure 8.2 shown that a six stage pipeline can 
reduce the execution time for 9 instructions from 54 time units to 14 time units. 

 

Also the diagram assumes that all of the stages can be performed in parallel, in particular, it is assumed that 
there are no memory conflicts. The processor make use of instruction pipelining to speed up executions, pipeling 
invokes breaking up the instruction cycle into a number of separate stages in a sequence. However the 
occurrence of branches and independencies between instruction complates the design and use of pipeline. 

Pipeline Performance and Limitations 

With the pipeling approach, as a form of parallelism, a “good” design goal of any system is to have all of its 
components performing useful work all of the time, we can obtain a high efficiency. The instruction cycle state 
diagram clearly shows the sequence of operations that take place in order to execute a single instruction. 

This strategy can give the following: 

- Perform all tasks concurrently, but on different sequential instructions 

– The result is temporal parallelism. 

– Result is the instruction pipeline. 

 

 Instruction Set Architecture (ISA): 



Machine Instruction Characteristics 

What is an Instruction Set? 

From the designer's point of view, the machine instruction set provides the functional requirements for the CPU: 
Implementing the CPU is a task that in large part involves implementing the machine instruction set. 

From the user's side, the user who chooses to program in machine language (actually, in assembly language) 
becomes aware of the register and memory structure, the types of data directly supported by the machine, and 
the functioning of the ALU. 

Elements of an Instruction 

Each instruction must have elements that contain the information required by the CPU for execution. These 
elements are as follows 

 Operation code: Specifies the operation to be performed (e.g.. ADD, I/O). The operation is specified by a binary code, known 
as the operation code, or opcode. 

 Source operand reference: The operation may involve one or more source operands, that is, operands that are inputs for the 
operation. 

 Result operand reference: The operation may produce a result. 

 Next instruction reference: This tells the CPU where to fetch the next instruction after the execution of this instruction is 

complete. 

The next instruction to be fetched is located in main memory or, in the case of a virtual memory system, in either 
main memory or secondary memory (disk). In most cases, the next instruction to be fetched immediately follows 
the current instruction. In those cases, there is no explicit reference to the next instruction. Source and result 
operands can be in one of three areas: 

 Main or virtual memory: As with next instruction references, the main or virtual memory address must be supplied. 

 CPU register: With rare exceptions, a CPU contains one or more registers that may be referenced by machine instructions. If 
only one register exists, reference to it may be implicit. If more than one register exists, then each register is assigned a unique 
number, and the instruction must contain the number of the desired register. 

 I/O device: The instruction must specify (he I/O module and device for the operation. If memory-mapped I/O is used, this is just 

another main or virtual memory address. 

Instruction Cycle State Diagram 

 

 



Instruction Representation 

Within the computer, each instruction is represented by a sequence of bits. The instruction is divided into fields, 
corresponding to the constituent elements of the instruction. During instruction execution, an instruction is read 
into an instruction register (IR) in the CPU. The CPU must be able to extract the data from the various instruction 
fields to perform the required operation. 

It is difficult for both the programmer and the reader of textbooks to deal with binary representations of machine 
instructions. Thus, it has become common practice to use a symbolic representation of machine instructions. 
Opcodes are represented by abbreviations, called mnemonics, that indicate the operation. Common examples 
include 

ADD Add 

SUB Subtract 

MPY Multiply 

DIV Divide 

LOAD Load data from memory 

STOR Store data to memory 

Operands are also represented symbolically. For example, the instruction 

ADD R, Y 

may mean add the value contained in data location Y to the contents of register R. In this example. Y refers to 
the address of a location in memory, and R refers to a particular register. Note that the operation is performed on 
the contents of a location, not on its address. 

Simple Instruction Format 

 

RISC and CISC: Characteristics of CISC: 

Complex Instruction Set Architecture (CISC) –  

The main idea is that a single instruction will do all loading, evaluating, and storing operations 

just like a multiplication command will do stuff like loading data, evaluating, and storing it, 

hence it’s complex.  

Bot CISC: The CISC approach attempts to minimize the number of instructions per program 
but at the cost of increase in number of cycles per instruction.  
  
h approaches try to increase the CPU performance  

Characteristic of CISC –  
  
1. Complex instruction, hence complex instruction decoding.  

  
2. Instructions are larger than one-word size.  

  
3. Instruction may take more than a single clock cycle to get executed.  

  
4. Less number of general-purpose registers as operation get performed in memory itself.  

  
5. Complex Addressing Modes.  

  
More Data types.  
 

 

Characteristics of RISC: 
Reduced Instruction Set Architecture (RISC) –  

The main idea behind is to make hardware simpler by using an instruction set composed of a 
few basic steps for loading, evaluating, and storing operations just like a load command will 
load data, store command will store the data 



RISC: Reduce the cycles per instruction at the cost of the number of instructions per program.  
Characteristic of RISC –  
  
1. Simpler instruction, hence simple instruction decoding.  

  
2. Instruction comes undersize of one word.  

  
3. Instruction takes a single clock cycle to get executed.  

  
4. More number of general-purpose registers.  

  
5. Simple Addressing Modes.  

  
6. Less Data types.  

  
Pipeline can be achieved.  
 

 RISC versus CISC: 

   
 Earlier when programming was done using assembly language, a need was felt to make 
instruction do more task because programming in assembly was tedious and error-prone due 
to which CISC architecture evolved but with the uprise of high-level language dependency on 
assembly reduced RISC architecture prevailed.  

  
Example – Suppose we have to add two 8-bit number:  
  
 CISC approach: There will be a single command or instruction for this like ADD which will 

perform the task.  
  

 RISC approach: Here programmer will write the first load command to load data in 
registers then it will use a suitable operator and then it will store the result in the desired 
location.  
  

So, add operation is divided into parts i.e. load, operate, store due to which RISC programs are 
longer and require more memory to get stored but require fewer transistors due to less 
complex command.  

Difference –  
  

Focus on software Focus on hardware 

Uses only Hardwired control unit 

Uses both hardwired and micro 

programmed control unit 

Transistors are used for more registers 
Transistors are used for storing complex  
Instructions 

Fixed sized instructions Variable sized instructions 

Can perform only Register to Register 

Arithmetic operations 

Can perform REG to REG or REG to MEM 

or MEM to MEM 

Requires more number of registers Requires less number of registers 

Code size is large Code size is small 



An instruction execute in a single clock 

cycle Instruction takes more than one clock cycle 

An instruction fit in one word 

Instructions are larger than the size of one 

word 

  

 Vector Processing: 

 Requirements and Characteristics of vector processing:  

Vector processing performs the arithmetic operation on the large array of integers or 

floating-point number. Vector processing operates on all the elements of the array in 

parallel providing each pass is independent of the other. 

Vector processing avoids the overhead of the loop control mechanism that occurs in 
general-purpose computers. 

In this section, we will have a brief introduction on vector processing, its characteristics, 
about vector instructions and how the performance of the vector processing can be 
enhanced? So lets us start. 

Introduction 

We need computers that can solve mathematical problems for us which include, 
arithmetic operations on the large arrays of integers or floating-point numbers quickly. 
The general-purpose computer would use loops to operate on an array of integers or 
floating-point numbers. But, for large array using loop would cause overhead to the 
processor. 

To avoid the overhead of processing loops and fasten the computation, some kind of 
parallelism must be introduced. Vector processing operates on the entire array in just 
one operation i.e. it operates on elements of the array in parallel. But, vector processing 
is possible only if the operations performed in parallel are independent. 

Look at the figure below, and compare the vector processing with the general computer 
processing, you will notice the difference. Below, instructions in both the blocks are set 
to add two arrays and store the result in the third array. Vector processing adds both the 
array in parallel by avoiding the use of the loop. 



 

Operating on multiple data in just one instruction is also called Single Instruction 
Multiple Data (SIMD) or they are also termed as Vector instructions. Now, the data for 
vector instruction are stored in vector registers. 

Each vector register is capable of storing several data elements at a time. These several 
data elements in a vector register is termed as a vector operand. So, if there are n 
number of elements in a vector operand then n is the length of the vector. 

Supercomputers were evolved to deal with billions of floating-point operations/second. 
Supercomputer optimizes numerical computations (vector computations). 

But, along with vector processing supercomputers are also capable of doing scalar 
processing. Later, Array processor was introduced which particularly deals with vector 
processing, they do not indulge in scalar processing. 
 

Characteristics of Vector Processing 

Each element of the vector operand is a scalar quantity which can either be an integer, 
floating-point number, logical value or a character. Below we have classified the vector 
instructions in four types. 

Here, V is representing the vector operands and S represents the scalar operands. In 
the figure below, O1 and O2 are the unary operations and O3 and O4 are the binary 
operations. 



 

Most of the vector instructions are pipelined as vector instruction performs the same 
operation on the different data sets repeatedly. Now, the pipelining has start-up delay, 
so longer vectors would perform better here. 

The pipelined vector processors can be classified into two types based on from where 
the operand is being fetched for vector processing. The two architectural classifications 
are Memory-to-Memory and Register-to-Register. 

In Memory-to-Memory vector processor the operands for instruction, the intermediate 
result and the final result all these are retrieved from the main memory. TI-ASC, CDC 
STAR-100, and Cyber-205 use memory-to-memory format for vector instructions. 

In Register-to-Register vector processor the source operands for instruction, the 
intermediate result, and the final result all are retrieved from vector or scalar registers. 
Cray-1 and Fujitsu VP-200 use register-to-register format for vector instructions. 
 

Vector Instruction 

A vector instruction has the following fields: 

1. Operation Code 

Operation code indicates the operation that has to be performed in the given 
instruction. It decides the functional unit for the specified operation or reconfigures the 
multifunction unit. 

2. Base Address 

Base address field refers to the memory location from where the operands are to be 
fetched or to where the result has to be stored. The base address is found in the 
memory reference instructions. In the vector instruction, the operand and the result both 
are stored in the vector registers. Here, the base address refers to the 
designated vector register. 

3. Address Increment 

A vector operand has several data elements and address increment specifies 
the address of the next element in the operand. Some computer stores the data 
element consecutively in main memory for which the increment is always 1. But, some 
computers that do not store the data elements consecutively requires the variable 
address increment. 



4. Address Offset 

Address Offset is always specified related to the base address. The effective memory 
address is calculated using the address offset. 

5. Vector Length 

Vector length specifies the number of elements in a vector operand. It identifies 
the termination of a vector instruction. 

 


